Advertisement

Radiation and Environmental Biophysics

, Volume 58, Issue 1, pp 69–80 | Cite as

Measurement of γ-H2AX foci, miRNA-101, and gene expression as a means to quantify radiation-absorbed dose in cancer patients who had undergone radiotherapy

  • Venkateswarlu Raavi
  • J. Surendran
  • K. Karthik
  • Solomon F. D. Paul
  • K. Thayalan
  • J. Arunakaran
  • Perumal VenkatachalamEmail author
Original Article

Abstract

Radiological accidents and nuclear terrorism pose an increased threat to members of the public who, following such an event, would need to be assessed for medical care by fast triage. Assay methods such as chromosome aberrations (CA), cytokinesis-block micronucleus (CBMN) and fluorescence in situ hybridization (FISH) techniques have been well established for dose estimation and their potential for handling more samples has also been proved with automation. However, culturing of lymphocytes is an inevitable step, which limits the potential of these markers for triage. In vitro analysis of gamma-H2AX (γ-H2AX), gene and microRNA (miRNA) markers do not require culturing of lymphocytes, and as such have been suggested as attractive tools for triage. Despite studies reporting in vitro dose–response curves, limited evidence is available evaluating the suitability of these assays in real situations. In this study, we have measured the absorbed dose using γ-H2AX, gene (GADD45A, FDXR, and CDKN1A) and miRNA-101 expression in blood samples of cancer patients (n = 20) who had undergone partial-body radiotherapy and compared with the derived equivalent whole-body doses (EWBD). The obtained results from all patients showed a significant (p < 0.05) increase of γ-H2AX foci in post-irradiated as compared to pre-irradiated samples. Moreover, estimated doses using γ-H2AX foci showed a correlation with the derived EWBD (r2 = 0.60, p = 0.0003) and was also shown to be dependent on the irradiated body volume. Consistent with γ-H2AX foci frequency, an increase in fold change expression of genes and miRNA-101 was observed. However, the estimated dose significantly varied among the subjects and showed poor correlation (r2 = 0.09, 0.04, 0.01 and 0.03 for GADD45A, FDXR, CDKN1A and miRNA-101, respectively) with EWBD. The overall results suggest that the established in vitro γ-H2AX assay is suitable for the detection of radiation exposure and can also provide an estimate of the dose in in vivo irradiated samples. The genes and miRNA-101 markers showed increased expression; nevertheless, there is a need for further improvements to measure doses accurately using these markers.

Keywords

γ-H2AX foci MicroRNA Gene expression Biomarkers Radiotherapy 

Notes

Acknowledgements

We acknowledge the support from Medical Physicists Ms. Sidonia Vallas Xavier and nursing staff of Kamakshi Memorial Hospital, Chennai, India, for their help in the collection of blood samples from cancer patients who had undergone radiotherapy. We also acknowledge Dr. Elizabeth A. Ainsbury, Cytogenetics Group Leader, Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE CRCE), Chilton, Didcot, Oxon OX11 0RQ, UK, for her scientific input.

Funding

This work was supported by CSIR (Council of Scientific and Industrial Research), Government of India (File. No. 09/949/0004/2016-EMR-I) and Life Science Research Board, Defense Research Development Organization, Delhi, India, (Ref. No. DLS/81/48222/LSRB-261).

Compliance with ethical standards

Conflict of interest

All the authors declare that there is no conflict of interest.

References

  1. Ainsbury EA, Lloyd DC (2010) Dose estimation software for radiation biodosimetry. Health Phys 98 (2):290–295.  https://doi.org/10.1097/01HP.0000346305.84577.b4 CrossRefGoogle Scholar
  2. Ainsbury EA, Bakhanova E, Barquinero JF, Brai M, Chumak V, Correcher V, Darroudi F, Fattibene P, Gruel G, Guclu I, Horn S, Jaworska A, Kulka U, Lindholm C, Lloyd D, Longo A, Marrale M, Monteiro Gil O, Oestreicher U, Pajic J, Rakic B, Romm H, Trompier F, Veronese I, Voisin P, Vral A, Whitehouse CA, Wieser A, Woda C, Wojcik A, Rothkamm K (2011) Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat Prot Dosim 147(4):573–592.  https://doi.org/10.1093/rpd/ncq499 CrossRefGoogle Scholar
  3. Amundson SA, Fornace AJ Jr (2001) Gene expression profiles for monitoring radiation exposure. Radiat Prot Dosim 97(1):11–16.  https://doi.org/10.1093/oxfordjournals.rpd.a006632 CrossRefGoogle Scholar
  4. Anno GH, Baum SJ, Withers HR, Young RW (1989) Symptomatology of acute radiation effects in humans after exposure to doses of 0.5–30 Gy. Health Phys 56(6):821–838.  https://doi.org/10.1097/00004032-198906000-00001 CrossRefGoogle Scholar
  5. Badie C, Kabacik S, Balagurunathan Y, Bernard N, Brengues M, Faggioni G, Greither R, Lista F, Peinnequin A, Poyot T, Herodin F, Missel A, Terbrueggen B, Zenhausern F, Rothkamm K, Meineke V, Braselmann H, Beinke C, Abend M (2013) NATO biodosimetry study: laboratory intercomparison of gene expression assays. Radiat Res 180(2):138–148.  https://doi.org/10.1667/rr3236.1 ADSCrossRefGoogle Scholar
  6. Barnard S, Ainsbury EA, Al-hafidh J, Hadjidekova V, Hristova R, Lindholm C, Monteiro Gil O, Moquet J, Moreno M, Rossler U, Thierens H, Vandevoorde C, Vral A, Wojewodzka M, Rothkamm K (2015) The first γ-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiat Prot Dosim 164(3):265–270.  https://doi.org/10.1093/rpd/ncu259 CrossRefGoogle Scholar
  7. Basheerudeen SAS, Murtaza S, Raavi V, Bhavani M, Joseph S, Muralidharan T, Venkatachalam P (2016) Assessment of early and late DNA damages in interventional radiologists exposed to protracted low dose and dose rate of X-radiation. Int J Low Radiat 10(3):198–209.  https://doi.org/10.1504/IJLR.2016.081452 CrossRefGoogle Scholar
  8. Bhayana S, Song F, Jacob J, Fadda P, Denko NC, Xu-Welliver M, Chakravarti A, Jacob NK (2017) Urinary miRNAs as biomarkers for noninvasive evaluation of radiation-induced renal tubular injury. Radiat Res 188(6):626–635.  https://doi.org/10.1667/RR14828.1 ADSCrossRefGoogle Scholar
  9. Brzóska K, Kruszewski M (2015) Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose. Radiat Environ Biophys 54(3):353–363.  https://doi.org/10.1007/s00411-015-0603-8 CrossRefGoogle Scholar
  10. Feng L, He L, Wang Y, Du L, Xu C, Liu Q, Fan F (2015) Eight-year follow-up study of three individuals accidentally exposed to 60Co radiation: Chromosome aberration and micronucleus analysis. Mutat Res 784–785:10–14.  https://doi.org/10.1016/j.mrgentox.2015.04.005 CrossRefGoogle Scholar
  11. Fliedner TM, Feinendegen LE, Hopewell JW (eds) (2002a) Chronic irradiation: tolerance and failure in complex biological systems. Brit J Radiol, suppl 26. ISBN 10: 0905749502/ISBN 13:9780905749501$4Google Scholar
  12. Ghandhi SA, Smilenov LB, Elliston CD, Chowdhury M, Amundson SA (2015) Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med Genom 8:22.  https://doi.org/10.1186/s12920-015-0097-x CrossRefGoogle Scholar
  13. Grace MB, Muderhwa JM, Salter CA, Blakely WF (2006) Use of a centrifuge-based automated blood cell counter for radiation dose assessment. Mil Med 171(9):908–912.  https://doi.org/10.7205/MILMED.171.9.908 CrossRefGoogle Scholar
  14. Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Gueguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E (2017) Ionizing radiation biomarkers in epidemiological studies - An update. Mutat Res 771:59–84.  https://doi.org/10.1016/j.mrrev.2017.01.001 CrossRefGoogle Scholar
  15. Horn S, Barnard S, Rothkamm K (2011) Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PloS One 6 (9):e25113.  https://doi.org/10.1371/journal.pone.0025113 ADSCrossRefGoogle Scholar
  16. Hu S, Blakely WF, Cucinotta FA (2015) HEMODOSE: A Biodosimetry Tool Based on Multi-type Blood Cell Counts. Health Phys 109(1):54–68.  https://doi.org/10.1097/hp.0000000000000295 CrossRefGoogle Scholar
  17. International Atomic Energy Agency (2011) Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. IAEA 232, ViennaGoogle Scholar
  18. Kang C-M, Park K-P, Song J-E, Jeoung D-I, Cho C-K, Kim T-H, Bae S, Lee S-J, Lee Y-S (2003) Possible biomarkers for ionizing radiation exposure in human peripheral blood lymphocytes. Radiat Res 159(3):312–319.  https://doi.org/10.1667/0033-7587(2003)159%5B0312:pbfire%5D2.0.co;2 ADSCrossRefGoogle Scholar
  19. Kataoka Y, Bindokas VP, Duggan RC, Murley JS, Grdina DJ (2006) Flow cytometric analysis of phosphorylated histone H2AX following exposure to ionizing radiation in human microvascular endothelial cells. J Radiat Res 47(3/4):245–257.  https://doi.org/10.1269/jrr.0628 CrossRefGoogle Scholar
  20. Knops K, Boldt S, Wolkenhauer O, Kriehuber R (2012) Gene expression in low-and high-dose-irradiated human peripheral blood lymphocytes: possible applications for biodosimetry. Radiat Res 178(4):304–312.  https://doi.org/10.2307/41679876 ADSCrossRefGoogle Scholar
  21. Lacombe J, Brooks C, Hu C, Menashi E, Korn R, Yang F, Zenhausern F (2017) Analysis of saliva gene expression during head and neck cancer radiotherapy: a pilot study. Radiat Res 188(1):75–81.  https://doi.org/10.1667/RR14707.1 ADSCrossRefGoogle Scholar
  22. Lamkowski A, Forcheron F, Agay D, Ahmed EA, Drouet M, Meineke V, Scherthan H (2014) DNA damage focus analysis in blood samples of minipigs reveals acute partial body irradiation. PLoS One 9(2):e87458.  https://doi.org/10.1371/journal.pone.0087458 ADSCrossRefGoogle Scholar
  23. Manivannan B, Kuppusamy T, Venkatesan S, Perumal V (2018) A comparison of estimates of doses to radiotherapy patients obtained with the dicentric chromosome analysis and the γ-H2AX assay: Relevance to radiation triage. Appl Radiat Isot 131:1–7.  https://doi.org/10.1016/j.apradiso.2017.10.031 CrossRefGoogle Scholar
  24. Manning G, Kabacik S, Finnon P, Bouffler S, Badie C (2013) High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol 89(7):512–522.  https://doi.org/10.3109/09553002.2013.769694 CrossRefGoogle Scholar
  25. Manning G, Macaeva E, Majewski M, Kriehuber R, Brzoska K, Abend M, Doucha-Senf S, Oskamp D, Strunz S, Quintens R, Port M, Badie C (2017) Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study. Int J Radiat Biol 93(1):87–98.  https://doi.org/10.1080/09553002.2016.1227105 CrossRefGoogle Scholar
  26. Moquet J, Barnard S, Staynova A, Lindholm C, Monteiro Gil O, Martins V, Rossler U, Vral A, Vandevoorde C, Wojewodzka M, Rothkamm K (2017) The second γ-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). Int J Radiat Biol 93(1):58–64.  https://doi.org/10.1080/09553002.2016.1207822 CrossRefGoogle Scholar
  27. O’Brien G, Cruz-Garcia L, Majewski M, Grepl J, Abend M, Port M, Tichy A, Sirak I, Malkova A, Donovan E, Gothard L, Boyle S, Somaiah N, Ainsbury E, Ponge L, Slosarek K, Miszczyk L, Widlak P, Green E, Patel N, Kudari M, Gleeson F, Vinnikov V, Starenkiy V, Artiukh S, Vasyliev L, Zaman A, Badie C (2018) FDXR is a biomarker of radiation exposure in vivo. Sci Rep 8(1):684.  https://doi.org/10.1038/s41598-017-19043-w ADSCrossRefGoogle Scholar
  28. Port M, Majewski M, Herodin F, Valente M, Drouet M, Forcheron F, Tichy A, Sirak I, Zavrelova A, Malkova A, Becker BV, Veit DA, Waldeck S, Badie C, O’Brien G, Christiansen H, Wichmann J, Eder M, Beutel G, Vachelova J, Doucha-Senf S, Abend M (2018) Validating baboon ex vivo and in vivo. Radiation-related gene expression with corresponding human data. Radiat Res.  https://doi.org/10.1667/rr14958.1 Google Scholar
  29. Raavi V, Basheerudeen SAS, Jagannathan V, Joseph S, Chaudhury NK, Venkatachalam P (2016) Frequency of γ-H2AX foci in healthy volunteers and health workers occupationally exposed to X-irradiation and its relevance in biological dosimetry. Radiat Environ Biophys 55(3):339–347.  https://doi.org/10.1007/s00411-016-0658-1 CrossRefGoogle Scholar
  30. Redon CE, Dickey JS, Bonner WM, Sedelnikova OA (2009) γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res 43(8):1171–1178.  https://doi.org/10.1016/j.asr.2008.10.011 ADSCrossRefGoogle Scholar
  31. Rothkamm K, Barnard S, Ainsbury EA, Al-Hafidh J, Barquinero JF, Lindholm C, Moquet J, Perala M, Roch-Lefevre S, Scherthan H, Thierens H, Vral A, Vandersickel V (2013a) Manual versus automated γ-H2AX foci analysis across five European laboratories: can this assay be used for rapid biodosimetry in a large scale radiation accident? Mutat Res 756(1–2):170–173.  https://doi.org/10.1016/j.mrgentox.2013.04.012 CrossRefGoogle Scholar
  32. Rothkamm K, Beinke C, Romm H, Badie C, Balagurunathan Y, Barnard S, Bernard N, Boulay-Greene H, Brengues M, De Amicis A, De Sanctis S, Greither R, Herodin F, Jones A, Kabacik S, Knie T, Kulka U, Lista F, Martigne P, Missel A, Moquet J, Oestreicher U, Peinnequin A, Poyot T, Roessler U, Scherthan H, Terbrueggen B, Thierens H, Valente M, Vral A, Zenhausern F, Meineke V, Braselmann H, Abend M (2013b) Comparison of established and emerging biodosimetry assays. Radiat Res 180(2):111–119.  https://doi.org/10.1667/RR3231.1 ADSCrossRefGoogle Scholar
  33. Sak A, Grehl S, Erichsen P, Engelhard M, Grannass A, Levegrun S, Pottgen C, Groneberg M, Stuschke M (2007) γ-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: dependence on the dose-distribution, irradiated site and time from start of treatment. Int J Radiat Biol 83(10):639–652.  https://doi.org/10.1080/09553000701596118 CrossRefGoogle Scholar
  34. Suman FR, Raj RSS, Priyathersini N, Rajendran R, Rajendran R, Ramadoss U (2015) Biological reference interval for hematological profile of umbilical cord blood: a study conducted at a tertiary care centre in South India. JCDR 9(10):SC07–SC09.  https://doi.org/10.7860/JCDR/2015/14713.6675 Google Scholar
  35. Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, Smilenov LB (2011) Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Oncol Biol Phys 80(2):549–557.  https://doi.org/10.1016/j.ijrobp.2010.12.061 CrossRefGoogle Scholar
  36. Tichy A, Kabacik S, O’Brien G, Pejchal J, Sinkorova Z, Kmochova A, Sirak I, Malkova A, Beltran CG, Gonzalez JR, Grepl J, Majewski M, Ainsbury E, Zarybnicka L, Vachelova J, Zavrelova A, Davidkova M, Markova Stastna M, Abend M, Pernot E, Cardis E, Badie C (2018) The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. PLoS One 13(2):e0193412.  https://doi.org/10.1371/journal.pone.0193412 CrossRefGoogle Scholar
  37. Valente M, Denis J, Grenier N, Arvers P, Foucher B, Desangles F, Martigne P, Chaussard H, Drouet M, Abend M, Herodin F (2015) Revisiting biomarkers of total-body and partial-body exposure in a baboon model of irradiation. PLoS One 10(7):e0132194.  https://doi.org/10.1371/journal.pone.0132194 CrossRefGoogle Scholar
  38. Venkatachalam P, Paul SF, Mohankumar MN, Prabhu BK, Gajendiran N, Kathiresan A, Jeevanram R (1999) Higher frequency of dicentrics and micronuclei in peripheral blood lymphocytes of cancer patients. Mutat Res 425(1):1–8.  https://doi.org/10.1016/s0027-5107(98)00238-3 CrossRefGoogle Scholar
  39. Venkateswarlu R, Tamizh SG, Bhavani M, Kumar A, Alok A, Karthik K, Kalra N, Vijayalakshmi J, Paul SF, Chaudhury N (2015) Mean frequency and relative fluorescence intensity measurement of γ-H2AX foci dose response in PBL exposed to γ-irradiation: an inter-and intra-laboratory comparison and its relevance for radiation triage. Cytom A 87(12):1138–1146.  https://doi.org/10.1002/cyto.a.22729 CrossRefGoogle Scholar
  40. Vinnikov VA, Ainsbury EA, Maznyk NA, Lloyd DC, Rothkamm K (2010) Limitations associated with analysis of cytogenetic data for biological dosimetry. Radiat Res 174(4):403–414.  https://doi.org/10.1667/rr2228.1 ADSCrossRefGoogle Scholar
  41. Vinnikov VA, Ainsbury EA, Lloyd DC, Maznyk NA, Rothkamm K (2011) Difficult cases for chromosomal dosimetry: statistical considerations. Rad Meas 46(9):1004–1008.  https://doi.org/10.1016/j.radmeas.2011.02.003 CrossRefGoogle Scholar
  42. Zahnreich S, Ebersberger A, Kaina B, Schmidberger H (2015) Biodosimetry based on γ-H2AX quantification and cytogenetics after partial-and total-body irradiation during fractionated radiotherapy. Radiat Res 183(4):432–446.  https://doi.org/10.1667/RR13911.1 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Human GeneticsSri Ramachandra Medical College and Research Institute (Deemed to be University)ChennaiIndia
  2. 2.Department of Radiation OncologyKamakshi Memorial HospitalChennaiIndia
  3. 3.Department of Endocrinology, Dr. ALM PGIBMSUniversity of MadrasChennaiIndia

Personalised recommendations