Skip to main content
Log in

Finding sensitive parameters in internal dose calculations for radiopharmaceuticals commonly used in clinical nuclear medicine

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Internal dosimetry after incorporation of radionuclides requires standardized biokinetic and dosimetric models. The aim of the present work was to identify the parameters and the components of the models which contribute most to dosimetric uncertainty. For this a method was developed allowing for the calculation of the uncertainties of the absorbed dose coefficients. More specifically, the sampling-based regression method and the variance-based method were used to develop and apply a global method of sensitivity analysis. This method was then used to quantify the impact of various biokinetic and dosimetric parameters on the uncertainty of internal doses associated with the incorporation of seven common radiopharmaceuticals. It turned out that the correlation between biokinetic parameters and time-integrated activity or calculated absorbed dose is strongest when the source and target organ are identical, in accordance with the ICRP and the MIRD approach. According to the ICRP approach, the parameter Fs which describes the fractional distribution of any incorporated radioactivity to organ S, has the greatest correlation with the time-integrated activity in the corresponding source organ or with the calculated dose in the corresponding target organ. In contrast, the MIRD approach suggested several biokinetic parameters with similar correlation. The dosimetric parameters usually contribute more to uncertainty in the calculated dose coefficients than the biokinetic parameters, in both approaches. The results obtained are helpful for the revision of biokinetic models for radiopharmaceuticals, because the most important parameters in clinical applications can now be identified and investigated in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andros G, Harper PV, Lathorop KA, McCardle RJ (1965) Pertechnetate-99m localisation in man with application to thyroid scanning and the study of thyroid physiology. J Clin Endocrinol 25:1067–1076

    Article  Google Scholar 

  • Atkins HL, Budinger TF, Lebowitz E, Ansari AN, Greene MW, Fairchild RG, Ellis KJ (1977) Thallium-201 for medical use. Part 3: human distribution and physical imaging properties. J Nucl Med 18:133–140

    Google Scholar 

  • Berman M (1976) MIRD Pamphlet No. 12: Kinetic models for absorbed dose calculations. Society of Nuclear Medicine, New York

    Google Scholar 

  • Bolch WE, Eckerman KF, Sgouros G, Thomas SR (2009) MIRD Pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med 50:477–484

    Article  Google Scholar 

  • Brownell GL, Ackerman RH, Strauss HW, Elmaleh DR, Cochavi S, Alpert N, Correia JA, Kearfott KJ, Taveras J (1980) Preliminary imaging results with 18F-2-fluoro-2-deoxy-d-glucose. J Comput Assist Tomogr 4:473–477

    Article  Google Scholar 

  • Castronovo FP (1993) 201Tl-labelled TlCl dosimetry revisited. Nucl Med Commun 14:104–107

    Article  Google Scholar 

  • Cristy M, Eckerman KF (1987) Specific absorbed fractions of energy at various ages from internal photon sources, Part I: methods. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Deloar HM, Fujiwara T, Shidahara M, Nakamura T, Watabe H, Narita Y, Itoh M, Miyake M, Watanuki S (1998) Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxy-d-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eur J Nucl Med 25:565–574

    Article  Google Scholar 

  • Hays MT, Segall GM (1998) A mathematical model for the distribution of fluorodeoxyglucose in humans. J Nucl Med 40:1358–1366

    Google Scholar 

  • Higley B, Smith FW, Smith T, Gemmell HG, Gupta PD, Gvozdanovich V, Graham D, Hinge D, Davidson J, Lahiri A (1993) Technetium-99m-1,2-bis[bis(2-ethoxyethyl) phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med 34:30–38

    Google Scholar 

  • Huang S-C, Phelps E, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82

    Google Scholar 

  • ICRP (1987) Radiation dose to patients from radiopharmaceuticals. In: ICRP Publication 53. Pergamon Press, Oxford

    Google Scholar 

  • ICRP (1998) Radiation dose to patients from radiopharmaceuticals. ICRP Publication 80. Pergamon Press, Oxford

    Google Scholar 

  • ICRP (2008) Radiation dose to patients from radiopharmaceuticals. ICRP Publication 106. International Commission of Radiological Protection, Oxford

    Google Scholar 

  • ICRP (2009) Adult reference computational phantoms. ICRP Publication 110. International Commission on Radiological Protection, Oxford

    Google Scholar 

  • ICRP (2015) Radiation dose to patients from radiopharmaceuticals: A compendium of current information related to frequently used substances. ICRP Publication 128

  • Iman RL, Shortencarier MJ (1984) A FORTRAN 77 program and user’s guide for the generation of latin hypercube and random samples for use with computer models,” NUREGKR-3624 (SAND83-2365)

  • Iman RL, Shortencarier MJ, Johnson JD (1985) A Fortran 77 program and user’s guide for the calculation of partial correlation and standardized regression coefficients. Sandia National Labs., Albuquerque

    Google Scholar 

  • Khamwan K, Krisanachinda A, Pasawang P (2010) The determination of patient dose from 18F-FDG PET/CT examination. Radiat Prot Dosimetry 141:50–55

    Article  Google Scholar 

  • Krahwinkel W, Herzog H, Feinendegen LE (1988) Pharmacokinetics of Thallium-201 in normal individuals after routine myocardial scintigraphy. J Nucl Med 29:1582–1586

    Google Scholar 

  • Lebowitz E, Greene MW, Fairchild R, Bradley-Moore PR, Atkins HL, Ansari AN, Richards P, Belgrave E (1975) Thallium-201 for medical use. J Nucl Med 16:151–155

    Google Scholar 

  • Leide S, Diemer H, Ahlgren L, Mattson S (1992) In Vivo Distribution and Dosimetry of Tc-99m MIBI in Man

  • McAfee JG, Fueger CF, Stern HS, Wagner HN, Migita jr T (1964) Tc99m pertechnetate for brain scanning. J Nucl Med 5:811–827

    Google Scholar 

  • NCRP (2009) Uncertainty in internal radiation dose assessment. National Council on Radiation Protection & Measurement, Bethesda

    Google Scholar 

  • Reivich M, Kuhl DE, Wolf A, Greenberg J, Phelps ME, Ido T, Casella V, Fowler J, Hoffman EJ, Alavi A, Som P, Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F (2000) Sensitivity analysis as an ingredient of modeling. Stat Sci 15(4):377–395

    Article  MathSciNet  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. John Wiley & Sons, Ltd., New Jersey

    MATH  Google Scholar 

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer

  • Snyder WS, Ford MR, Warner GG, Fisher HL (1969) Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee (MIRD). Pamphlet No. 5. J Nucl Med 10(3):7–52

    Google Scholar 

  • Snyder WS, Ford MR, Warner GG, Watson EE (1975) “S” absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet Society of Nuclear Medicine, New York

    Google Scholar 

  • Snyder WS, Ford MR, Warner GG (1978) Estimates of specific absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Society of Nuclear Medicine, New York

    Google Scholar 

  • Sobol IM (1969) Multidimensional quadrature formulas and Haar functions. Nauka edn, Moscow (In Russian)

    MATH  Google Scholar 

  • Sobol IM (1990) On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 2(1):112–118

    MathSciNet  MATH  Google Scholar 

  • Sobol IM (1993) Sensitivity analysis for non-linear mathematical models. Math Model Comput Exp 1:407–414

    MATH  Google Scholar 

  • Spielmann V, Li WB, Zankl M, Oeh U, Hoeschen C (2016) Uncertainty quantification in internal dose calculations for seven selected radiopharmaceuticals. J Nucl Med 57:122–128

    Article  Google Scholar 

  • Stabin MG (2007) Radiation protection and dosimetry: an introduction to health physics. Springer, Berlin

    Google Scholar 

  • Stabin MG (2008a) Radiopharmaceuticals for nuclear cardiology: Radiation dosimetry, uncertainties, and risk. J Nucl Med 49:1555–1563. https://doi.org/10.2967/jnumed.108.052241

    Article  Google Scholar 

  • Stabin MG (2008b) Uncertainties in internal dose calculations for radiopharmaceuticals. J Nucl Med 49:853–860

    Article  Google Scholar 

  • Subramanian G, McAfee JG, Blair RJ, Kallfelz FA, Thomas FD (1975) Technetium-99m-methylene diphosphonate—a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755

    Google Scholar 

  • Thomas SR, Stabin MG, Castronovo FP (2005) Radiation-absorbed dose from 201Tl-thallous chloride. J Nucl Med 46:502–508

    Google Scholar 

  • Zankl M, Schlattl H, Petoussi-Henss N, Hoeschen C (2012) Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms. Phys Med Biol 57:4501–4526

    Article  Google Scholar 

  • Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer PB (1994) Computerized three-dimensional segmented human anatomy. Med Phys 21(2):299–302

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the German Federal Ministry for Environment, Nature Conservation, Building and Nuclear Safety (BMUB) under Contract No. 3612S20013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir Spielmann or Wei Bo Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spielmann, V., Li, W.B. & Zankl, M. Finding sensitive parameters in internal dose calculations for radiopharmaceuticals commonly used in clinical nuclear medicine. Radiat Environ Biophys 57, 277–284 (2018). https://doi.org/10.1007/s00411-018-0750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-018-0750-9

Keywords

Navigation