Skip to main content

Advertisement

Log in

Human serum miR-34a as an indicator of exposure to ionizing radiation

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Radiation exposure in industrial accidents or nuclear device attacks is a major public health concern. There is an urgent need for markers that rapidly identify people exposed to ionizing radiation (IR). Finding a blood-based marker is advantageous because of the ease of sample collection. This study was designed to test the hypothesis that serum miR-34a could serve as an indicator of exposure to IR. Therefore, 44 women with breast cancer, where radiotherapy was part of their therapeutic protocol, were investigated in this study. After demonstrating the appropriateness of our microRNA (miRNA) extraction efficiency and miRNA assay in human serum, we analyzed the miR-34a level in paired serum samples before and after radiotherapy. Fifty Gy X-ray irradiation in daily dose fractions of 2 Gy, 5 days per week, was used in this study. We demonstrated that IR significantly increased serum level of miR-34a. By measuring miR-34a in serum, we could distinguish irradiated patients with sensitivity of 65 % and specificity of 75 %. According to this study, serum miR-34a has the potential to be used as an indicator of radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsbury E, Badie C, Barnard S, Manning G, Moquet J, Abend M, Bassinet C et al (2016) Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans—joint RENEB and EURADOS inter-laboratory comparisons. Int J Radiat Biol. doi:10.1080/09553002.2016.1206233

    Google Scholar 

  • Al-Mayah AH, Irons SL, Pink RC, Carter DR, Kadhim MA (2012) Possible role of exosomes containing RNA in mediating nontargeted effect of ionizing radiation. Radiat Res 177:539–545

    Article  Google Scholar 

  • Al-Mayah A, Bright S, Chapman K, Irons S, Luo P, Carter D, Goodwin E, Kadhim M (2015) The non-targeted effects of radiation are perpetuated by exosomes. Mutat Res 772:38–45

    Article  Google Scholar 

  • Badie C, Kabacik S, Balagurunathan Y, Bernard N, Brengues M, Faggioni G, Greither R et al (2013) Laboratory intercomparison of gene expression assays. Radiat Res 180:138–148

    Article  Google Scholar 

  • Barker A, Giles KM, Epis MR, Zhang PM, Kalinowski F, Leedman PJ (2010) Regulation of ErbB receptor signalling in cancer cells by microRNA. Curr Opin Pharmacol 10:655–661

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  Google Scholar 

  • Baskar R (2010) Emerging role of radiation induced bystander effects: cell communications and carcinogenesis. Genome Integr 1:1–8

    Article  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    Article  Google Scholar 

  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  Google Scholar 

  • Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, Maris JM (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742

    Article  Google Scholar 

  • Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477

    Article  Google Scholar 

  • Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495

    Article  Google Scholar 

  • Desouky O, Ding N, Zhou G (2015) Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci 8:247–254

    Article  Google Scholar 

  • Fenech M (2011) Current status, new frontiers and challenges in radiation biodosimetry using cytogenetic, transcriptomic and proteomic technologies. Radiat Meas 46:737–741

    Article  Google Scholar 

  • Halimi M, Asghari SM, Sariri R, Moslemi D, Parsian H (2013a) Cellular response to ionizing radiation: a microRNA story. IJMCM 1:1–7

    Google Scholar 

  • Halimi M, Parsian H, Asghari SM, Sariri R, Moslemi D, Yeganeh F (2013b) MicroRNAs: are they indicators for prediction of response to radiotherapy in breast cancer? J Med Hypotheses Ideas 7:59–64

    Article  Google Scholar 

  • Halimi M, Parsian H, Asghari SM, Sariri R, Moslemi D, Yeganeh F, Zabihi E (2014) Clinical translation of human microRNA 21 as a potential biomarker for exposure to ionizing radiation. Transl Res 163:578–584

    Article  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  Google Scholar 

  • He L, He X, Lim LP, De Stanchina E, Xuan Z, Liang Y, Xue W et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  ADS  Google Scholar 

  • Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251:499–505

    Article  Google Scholar 

  • Hu H, Du L, Nagabayashi G, Seeger RC, Gatti RA (2010) ATM is down-regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci USA 107:1506–1511

    Article  ADS  Google Scholar 

  • Huang K, Tang Y, He L, Dai Y (2016) MicroRNA-340 inhibits prostate cancer cell proliferation and metastasis by targeting the MDM2-p53 pathway. Oncol Rep 35:887–895

    Google Scholar 

  • IAEA (2011) Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ilnytskyy Y, Zemp FJ, Koturbash I, Kovalchuk O (2008) Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism. Biochem Biophys Res Commun 377:41–45

    Article  Google Scholar 

  • Ishii H, Saito T (2006) Radiation-induced response of micro RNA expression in murine embryonic stem cells. Med Chem 2:555–563

    Article  Google Scholar 

  • Jacob NK, Cooley JV, Yee TN, Jacob J, Alder H, Wickramasinghe P, Maclean KH, Chakravarti A (2013) Identification of sensitive serum microRNA biomarkers for radiation biodosimetry. PLoS One 8:e57603

    Article  ADS  Google Scholar 

  • Jaklevic B (2007) Modulation of ionizing radiation-induced apoptosis by bantam microRNA in Drosophila. Dev Biol 320:122–130

    Article  Google Scholar 

  • Jella KK, Garcia A, Mcclean B, Byrne HJ, Lyng FM (2013) Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells. Int J Radiat Biol 89:182–190

    Article  Google Scholar 

  • Jella KK, Rani S, O’driscoll L, Mcclean B, Byrne HJ, Lyng FM (2014) Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat Res 181:138–145

    Article  Google Scholar 

  • Josson S, Sung SY, Lao K, Chung LW, Johnstone PA (2008) Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68:1599–1606

    Article  Google Scholar 

  • Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301

    Article  Google Scholar 

  • Li Z, Doho G, Zheng X, Jella KK, Li S, Wang Y, Dynan WS (2015) Co-culturing with high-charge and energy particle irradiated cells increases mutagenic joining of enzymatically induced DNA double-strand breaks in nonirradiated cells. Radiat Res 184:249–258

    Article  Google Scholar 

  • Liu C, Zhou C, Gao F, Cai S, Zhang C, Zhao L, Zhao F et al (2011) MiR-34a in age and tissue related radio-sensitivity and serum miR-34a as a novel indicator of radiation injury. Int J Biol Sci 7:221–223

    Article  Google Scholar 

  • Lyng FM, Desplanques M, Jella KK, Garcia A, Mcclean B (2012) The importance of serum serotonin levels in the measurement of radiation-induced bystander cell death in HaCaT cells. Int J Radiat Biol 88:770–772

    Article  Google Scholar 

  • Mao A, Liu Y, Zhang H, Di C, Sun C (2014) MicroRNA expression and biogenesis in cellular response to ionizing radiation. DNA Cell Biol 33:667–679

    Article  Google Scholar 

  • Metheetrairut C, Slack FJ (2013) MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 23:12–19

    Article  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. PNAS 105:10513–10518

    Article  ADS  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    Article  Google Scholar 

  • Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE (2009) The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 112:55–59

    Article  Google Scholar 

  • Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, Cohen MB (2008) p53-induced apoptosis in prostate cancer. Cancer Biol Ther 7:1288–1296

    Article  Google Scholar 

  • Roth C, Rack B, Muller V, Janni W, Pantel K, Schwarzenbach H (2010) Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12:90–101

    Article  Google Scholar 

  • Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  Google Scholar 

  • Shen J, Niu W, Zhou M, Zhang H, Ma J, Wang L, Zhang H (2014) MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer. PLoS One 9:e104510

    Article  ADS  Google Scholar 

  • Shin S, Cha HJ, Lee E-M, Lee S-J, Seo S-K, Jin H-O, Park I-C et al (2009) Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int J Oncol 35:21–30

    Google Scholar 

  • Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13:283–296

    Google Scholar 

  • Summerer I, Niyazi M, Unger K, Pitea A, Zangen V, Hess J, Atkinson MJ et al (2013) Changes in circulating microRNAs after radiochemotherapy in head and neck cancer patients. Radiat Oncol 8:296

    Article  Google Scholar 

  • Templin T, Amundson SA, Brenner DJ, Smilenov LB (2011a) Whole mouse blood microRNA as biomarkers for exposure to gamma-rays and 56Fe ion. Int J Radiat Biol 87:653–662

    Article  Google Scholar 

  • Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, Smilenov LB (2011b) Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Onco Biol Phys 80:549–557

    Article  Google Scholar 

  • Wang F, Zheng Z, Guo J, Ding X (2010) Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 119:586–593

    Article  Google Scholar 

  • Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116

    Article  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  Google Scholar 

  • Xu M, Mo YY (2012) The Akt-associated microRNAs. Cell Mol Life Sci 69:3601–3612

    Article  Google Scholar 

  • Yamakuchi M (2012) MicroRNA regulation of SIRT1. Front Physiol 3:68

    Article  Google Scholar 

  • Yamakuchi M, Lowenstein CJ (2009) MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8:712–715

    Article  Google Scholar 

  • Yan D, Ng WL, Zhang X, Wang P, Zhang Z, Mo Y-Y, Mao H et al (2010) Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One 5:e11397

    Article  ADS  Google Scholar 

  • Zamore PD, Haley B (2005) Ribo-genome: the big world of small RNAs. Science 309:1519–1524

    Article  ADS  Google Scholar 

  • Zhang X, Wan G, Berger FG, He X, Lu X (2011) The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell 41:371–383

    Article  Google Scholar 

  • Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinform 13:17–24

    Article  Google Scholar 

  • Zhang C, Liu J, Tan C, Yue X, Zhao Y, Peng J, Wang X et al (2016) microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis. Oncotarget 7:8783–8796

    Google Scholar 

  • Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, Yu Z et al (2005) Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci USA 102:14641–14646

    Article  ADS  Google Scholar 

  • Zhu W, Qin W, Atasoy U, Sauter ER (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2:89–93

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Babol University of Medical Sciences and University of Guilan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hadi Parsian or S. Mohsen Asghari.

Ethics declarations

Conflict of interest

None

Additional information

Mohammad Halimi and Ahmad Shahabi have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halimi, M., Shahabi, A., Moslemi, D. et al. Human serum miR-34a as an indicator of exposure to ionizing radiation. Radiat Environ Biophys 55, 423–429 (2016). https://doi.org/10.1007/s00411-016-0661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-016-0661-6

Keywords

Navigation