Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

Abstract

The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.

This is a preview of subscription content, log in to check access.

References

  1. Akiba S, Mizuno S (2012) The third analysis of cancer mortality among Japanese nuclear workers, 1991–2002: estimation of excess relative risk per radiation dose. J Radiol Prot 32:73–83

    Article  Google Scholar 

  2. Beels L, Bacher K, De Wolf D, Werbrouck J, Thierens H (2009) γ-H2AX foci as a biomarker for patient X-ray exposure in paediatric cardiac catheterization: are we underestimating radiation risks? Circulation 120:1903–1909

    Article  Google Scholar 

  3. Beels L, Werbrouck J, Thierens H (2010) Dose response and repair kinetics of γ-H2AX foci induced by in vitro irradiation of whole blood and T-lymphocytes with X- and γ-radiation. Int J Radiat Biol 86:760–768

    Article  Google Scholar 

  4. Birschwilks M, Gruenberger M, Adelmann C, Tapio S, Gerber G, Schofield PN, Grosche B (2011) The European radiobiological archives: online access to data from radiobiological experiments. Radiat Res 175:526–531

    Article  Google Scholar 

  5. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, Yoshimura T, Bermann F, Cowper G, Fix J, Hacker C, Heinmiller B, Marshall M, Thierry-Chef I, Utterback D, Ahn YO, Amoros E, Ashmore P, Auvinen A, Bae JM, Solano JB, Biau A, Combalot E, Deboodt P, Diez Sacristan A, Eklof M, Engels H, Engholm G, Gulis G, Habib R, Holan K, Hyvonen H, Kerekes A, Kurtinaitis J, Malker H, Martuzzi M, Mastauskas A, Monnet A, Moser M, Pearce MS, Richardson DB, Rodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K (2005) Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. BMJ 331:77

    Article  Google Scholar 

  6. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, Yoshimura T, Bermann F, Cowper G, Fix J, Hacker C, Heinmiller B, Marshall M, Thierry-Chef I, Utterback D, Ahn YO, Amoros E, Ashmore P, Auvinen A, Bae JM, Bernar J, Biau A, Combalot E, Deboodt P, Diez Sacristan A, Eklöf M, Engels H, Engholm G, Gulis G, Habib RR, Holan K, Hyvonen H, Kerekes A, Kurtinaitis J, Malker H, Martuzzi M, Mastauskas A, Monnet A, Moser M, Pearce MS, Richardson DB, Rodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    Article  Google Scholar 

  7. Carnes BA, Fritz TE (1991) Responses of the beagle to protracted irradiation. I. Effect of total dose and dose rate. Radiat Res 128:125–132

    Article  Google Scholar 

  8. Carnes BA, Fritz TE (1993) Continuous irradiation of beagles with γ rays. Radiat Res 136:103–110

    Article  Google Scholar 

  9. Cologne J, Preston DL (2001) Impact of comparison group on cohort dose response regression: an example using risk estimation in atomic-bomb survivors. Health Phys 80:491–496

    Article  Google Scholar 

  10. Daniels RD, Bertke S, Waters KM, Schubauer-Berigan MK (2013) Risk of leukaemia mortality from exposure to ionising radiation in US nuclear workers: a pooled case-control study. Occup Environ Med 70:41–48

    Article  Google Scholar 

  11. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario AS, Tirmarche M, Tomásek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330:223

    Article  Google Scholar 

  12. Degteva MO, Kozheurov VP, Tolstykh EI, Vorobiova MI, Anspaugh LR, Napier BA, Kovtun AN (2000) The Techa River dosimetry system: methods for the reconstruction of internal dose. Health Phys 79:24–35

    Article  Google Scholar 

  13. Degteva MO, Vorobiova MI, Tolstykh EI, Shagina NB, Shishkina EA, Anspaugh LR, Napier BA, Bougrov NG, Shved VA, Tokareva EE (2006) Development of an improved dose reconstruction system for the Techa River population affected by the operation of the Mayak Production Association. Radiat Res 166:255–270

    Article  Google Scholar 

  14. Degteva MO, Shagina NB, Tolstykh EI, Vorobiova MI, Anspaugh LR, Napier BA (2009) Individual dose calculations with use of the Revised Techa River Dosimetry System TRDS-2009D. Final Report for Milestone 22. Chelyabinsk, Russia and Sault Lake City, Utah: Urals Research Center for Radiation Medicine and University of Utah

  15. Degteva MO, Shagina NB, Vorobiova MI, Anspaugh LR, Napier BA (2012) Reevaluation of waterborne releases of radioactive materials from the Mayak Production Association into the Techa River in 1949-1951. Health Phys 102:25–38

    Article  Google Scholar 

  16. Gerber G, Watson C, Sugahara T, Okada S (1996) International radiobiology archives of long-term animal studies I. Descriptions of participating institutions and studies. Retrieved from http://www.ustur.wsu.edu/NRA/pdf/IRA.pdf

  17. Ghandhi SA, Smilenov LB, Elliston CD, Chowdhury M, Amundson SA (2015) Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med Genomics 8:22

    Article  Google Scholar 

  18. Grudzenski S, Raths A, Conrad S, Rube CE, Lobrich M (2010) Inducible response required for repair of low dose radiation damage in human fibroblasts. Proc Natl Acad Sci USA 107:14205–14210

    Article  ADS  Google Scholar 

  19. Haley B, Wang Q, Wanzer B, Vogt S, Finney L, Yang PL, Paunesku T, Woloschak G (2011) Past and future work on radiobiology mega-studies: a case study at Argonne National Laboratory. Health Phys 100:613–621

    Article  Google Scholar 

  20. Haley B, Paunesku T, Grdina D, Woloschak G (2015) Animal mortality risk increase following low-LET radiation exposure is not linear-quadratic. PLOS ONE (submitted in June 2015)

  21. Hamada N, Maeda M, Otsuka K, Tomita M (2011) Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects. Curr Mol Pharmacol 4:79–95

    Article  Google Scholar 

  22. Hayata I, Wang C, Zhang W, Chen D, Minamihisamatsu M, Morishima H, Wei L, Sugahara T (2004) Effect of high level natural radiation on chromosomes of residents in southern China. Cytogenet Genome Res 104:237–239

    Article  Google Scholar 

  23. High Background Radiation Research Group, China (1980) Health survey in high background radiation area in China. Science 209:877–880

    Article  Google Scholar 

  24. Hoel DG (2015) Comments on the DDREF estimate of the BEIR VII Committee. Health Phys 108:351–356

    Article  Google Scholar 

  25. Hosoda M, Tokonami S, Omori Y, Sahoo SK, Akiba S, Sorimachi A, Ishikawa T, Nair RR, Jayalekshmi PA, Sebastian P, Iwaoka K, Akata N, Kudo H (2015) Estimation of external dose by car-borne survey in kerala, India. PLOS ONE 10:e0124433

    Article  Google Scholar 

  26. Hsu W-L, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, Kimura A, Kamada N, Dohy H, Tomonaga M, Iwanaga M, Miyazaki Y, Cullings HM, Suyama A, Ozasa K, Shore RE, Mabuchi K (2013) The Incidence of Leukemia, Lymphoma and Multiple Myeloma among Atomic Bomb Survivors: 1950–2001. Radiat Res 179:361–382

    Article  Google Scholar 

  27. ICRP (1991) 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann ICRP 21(1–3)

  28. ICRP (2005) Low-dose extrapolation of radiation-related cancer risk. ICRP Publication 99. Ann ICRP 35(4)

  29. ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 7(2–4)

  30. ICRP (2013a) ICRP Main Commission Meeting. April 15 to 18, 2013—Cambridge, UK. http://www.icrp.org/docs/Summary%20of%20April%202013%20Main%20Commission%20Meeting%20in%20Cambridge%20UK.pdf

  31. ICRP (2013b) Task Group 91. Radiation risk inference at low-dose and low-dose rate exposure for radiological protection purposes. http://www.icrp.org/icrp_group.asp?id=83

  32. ICRP (2015) Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. ICRP Publication 131. Ann ICRP 44(3–4)

  33. Jacob P, Rühm W, Walsh L, Blettner M, Hammer G, Zeeb H (2009) Is cancer risk of radiation workers larger than expected? Occup Environ Med 66:789–796

    Article  Google Scholar 

  34. Jayalekshmi P, Rajan B (2007) Cancer incidence in Karunagapally 1998–2002, Kerala, India. In: Cuardo MP, Edwards B, Shin HR, Storm H, Ferlay J, Heanue M, Boyle P, eds. Cancer incidence in five continents, vol IX. Lyon: International Agency for Research on Cancer; IARC Publication 160

  35. Kajita M, Fujita Y (2015) EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals. J Biochem 158:15–23

    Article  Google Scholar 

  36. Kellerer AM, Rossi HH (1972) The theory of dual radiation action. Curr Top Radiat Res Q 8:85–158

    Google Scholar 

  37. Kendall GM, Little MP, Wakeford R, Bunch KJ, Miles JC, Vincent TJ, Meara JR, Murphy MF (2013) A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980-2006. Leukemia 27:3–9

    Article  Google Scholar 

  38. Khokhryakov VV, Khokhryakov VF, Suslova KG, Vostrotin VV, Vvedensky VE, Sokolova AB, Krahenbuhl MP, Birchall A, Miller SC, Schadilov AE, Ephimov AV (2013) Mayak Workers Dosimetry System 2008 (MWDS-2008): assessment of internal α-dose from measurement results of plutonium activity in urine. Health Phys 104:366–378

    Article  Google Scholar 

  39. Krestinina LY, Davis FG, Schonfeld S, Preston DL, Degteva M, Epifanova S, Akleev AV (2013) Leukemia incidence in the Techa River Cohort: 1953–2007. Br J Cancer 109:2886–2893

    Article  Google Scholar 

  40. Kudo H, Tokonami S, Omori Y, Ishikawa T, Iwaoka K, Sahoo SK, Akata N, Hosoda M, Wanabongse P, Pornnumpa C, Sun Q, Li X, Akiba S (2015) Comparative dosimetry for radon and thoron in high background radiation areas in China. Radiat Prot Dosimetry. doi:10.1093/rpd/ncv235

    Google Scholar 

  41. Kuznetsova IS, Labutina EV, Hunter N, Haylock R (2015) Radiation risks of leukemia, lymphoma and multiple myeloma incidence among workers at the Mayak PA: 1948–2004. PLOS ONE (submitted in February 2015)

  42. Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, Hamra GB, Haylock R, Laurier D, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A (2015) Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2:e276–e281

    Article  Google Scholar 

  43. Löbrich M, Jeggo P (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7:861–869

    Article  Google Scholar 

  44. Loucas BD, Eberle R, Bailey SM, Cornforth MN (2004) Influence of dose rate on the induction of simple and complex chromosome exchanges by γ rays. Radiat Res 162:339–349

    Article  Google Scholar 

  45. Manning G, Kabacik Finnon P, Bouffler S, Badie C (2013) High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol 89:512–522

    Article  Google Scholar 

  46. Manning G, Taylor K, Finnon P, Lemon JA, Boreham DR, Badie C (2014) Quantifying murine bone marrow and blood radiation dose response following 18F-FDG PET with DNA damage biomarkers. Mutat Res 770:29–36

    Article  Google Scholar 

  47. Morgan WF, Sowa MB (2015) Non-targeted effects induced by ionizing radiation: mechanisms and potential impact on radiation induced health effects. Cancer Lett 356:17–21

    Article  Google Scholar 

  48. Nair MK, Amma S, Mani KS (1997) India, Karunagappally 1990–1994. In: Parkin DM, Whelan SL, Ferlay J, Raymond L, Young J, eds. Cancer incidence in five continents, vol VII. Lyon: International Agency for Research on Cancer; IARC Publication 143:350–353

  49. Nair MK, Gangadharan P, Jayalakshmi P, Mani KS (2002) Cancer incidence in Karunagappally 1993–1997, Kerala, India. In: Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB, eds. Cancer incidence in five continents, vol VIII. Lyon: International Agency for Research on Cancer; IARC Publication 155:240–241

  50. Nair RR, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Koga T, Morishima H, Makamura S, Sugahara T (2009) Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. Health Phys 96:55–66

    Article  Google Scholar 

  51. Nakajima T, Taki K, Wang B, Ono T, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M (2008) Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate γ-rays. J Radiat Res 49:661–666

    Article  Google Scholar 

  52. NAS (2006) Health risks from exposure to low levels of ionizing radiation (BEIR VII Phase 2). National Academy Press, Washington

    Google Scholar 

  53. NCRP (1980) Influence of dose and its distribution in time on dose-response relationships for low-LET radiations, NCRP Report No. 64. Issued April 1, 1980. Bethesda, Maryland

  54. Neary GJ (1965) Chromosome aberrations and the theory of RBE. General considerations. Int J Radiat Biol 9:477–502

    Article  Google Scholar 

  55. Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT, Yang P, Dyball J, Asaithamby A, Chen DJ, Bissell MJ, Thalhammer S, Costes SV (2012) Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci USA 109:443–448

    Article  ADS  Google Scholar 

  56. Ojima M, Furutani A, Ban N, Kai M (2011) Persistence of DNA double strand breaks in normal human cells induced by radiation-induced bystander effect. Radiat Res 175:90–96

    Article  Google Scholar 

  57. Okudaira N, Uehara Y, Fujikawa K, Kagawa N, Ootsuyama A, Norimura T, Saeki K, Nohmi T, Matsumura K, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Ono T (2010) Radiation dose-rate effect on mutation induction in spleen and liver of gpt delta mice. Radiat Res 173:138–147

    Article  Google Scholar 

  58. Ostroumova E, Preston DL, Ron E, Krestinina LY, Davis FG, Kossenko M, Akleyev AV (2008) Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956–2004. Br J Cancer 99:1940–1945

    Article  Google Scholar 

  59. Otsuka K, Iwasaki T (2015) Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing. J Radiat Res 56:615–622

    Article  Google Scholar 

  60. Otsuka K, Hamada N, Magae J, Matsumoto H, Hoshi Y, Iwasaki T (2013) Ionizing radiation leads to the replacement and de novo production of colonic Lgr5+ stem cells. Radiat Res 179:637–646

    Article  Google Scholar 

  61. Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177:229–243

    Article  Google Scholar 

  62. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res 168:1–64

    Article  Google Scholar 

  63. Rothkamm K, Löbrich M (2003) Evidence for a lack of DNA double strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100:5057–5062

    Article  ADS  Google Scholar 

  64. Russell WL, Kelly EM (1982) Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc Natl Acad Sci USA 79:542–544

    Article  ADS  Google Scholar 

  65. Schonfeld SJ, Krestinina LY, Epifanova S, Degteva MO, Akleyev AV, Preston DL (2013) Solid cancer mortality in the Techa River cohort (1950–2007). Radiat Res 179:183–189

    Article  Google Scholar 

  66. Searle AG (1974) Mutation induction in mice. Adv Radiat Biol 4:131–207

    Article  Google Scholar 

  67. Shagina NB, Vorobiova MI, Degteva MO, Peremyslova LM, Shishkina EA, Anspaugh LR, Napier BA (2012a) Reconstruction of the contamination of the Techa River in 1949-1951 as a result of releases from the “MAYAK” Production Association. Radiat Environ Biophys 51:349–366

    Article  Google Scholar 

  68. Shagina NB, Tolstakh EI, Degteva MO, Vorobiova MI, Anspaugh LR, Napier BA (2012b) Re-evaluation of radionuclide intakes for Techa River residents on the basis of revised source-term parameters. Health Phys 103:S96–S97

    Google Scholar 

  69. Sokolnikov ME, Preston DL, Gilbert ES, Schonfeld SJ, Koshurnikova NA (2015) Radiation effects on mortality from solid cancers other than lung, liver and bone cancer in the Mayak Worker cohort: 1948–2008. PLoS ONE 10:e0117784

    Article  Google Scholar 

  70. Spycher BD, Lupatsch JE, Zwahlen M, Röösli M, Niggli F, Grotzer MA, Rischewski J, Egger M, Kuehni CE, Swiss Pediatric Oncology Group, Swiss National Cohort Study (2015) Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123:622–628

    Article  Google Scholar 

  71. SSK (2014) Dose- and dose-rate-effectiveness factor (DDREF), Recommendation by the German Commission on Radiological Protection with scientific grounds, http://www.ssk.de/SharedDocs/Beratungsergebnisse_E/2014/DDREF_e.html?nn=2876278

  72. Takai D, Todate A, Yanai T, Ichinohe K, Oghiso Y (2011) Enhanced transplantability of a cell line from a murine ovary granulosa cell tumour in syngeneic B6C3F1 mice continuously irradiated with low dose-rate γ-rays. Int J Radiat Biol 87:729–735

    Article  Google Scholar 

  73. Taki K, Wang B, Nakajima T, Wu Y, Ono T, Uehara Y, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Magae J, Kakimoto A, Nenoi M (2009) Microarray analysis of differentially expressed genes in the kidneys and testes of mice after long-term irradiation with low-dose-rate γ-rays. J Radiat Res 50:241–252

    Article  Google Scholar 

  74. Tanaka S, Tanaka BI 3rd, Sasagawa S, Ichinohe K, Takabatake T, Matsushita S, Matsumoto T, Otsu H, Sato F (2003) No lengthening of life span in mice continuously exposed to γ rays at very low dose rates. Radiat Res 160:376–379

    Article  Google Scholar 

  75. Tanaka BI 3rd, Tanaka S, Ichinohe K, Matsushita S, Matsumoto T, Otsu H, Oghiso Y, Sato F (2007) Cause of death and neoplasia in mice continuously exposed to very low dose rates of γ rays. Radiat Res 167:417–437

    Article  Google Scholar 

  76. Tanaka K, Kohda A, Sato K, Toyokawa T, Ichinohe K, Ohtaki M, Oghiso Y (2009) Dose rate effectiveness for unstable-type chromosome aberrations detected in mice after continuous irradiation with low-dose-rate γ-rays. Radiat Res 171:290–301

    Article  Google Scholar 

  77. Tao Z, Akiba S, Zha Y, Sun Q, Zou J, Li J, Liu Y, Yuan Y, Tokonami S, Morishima H, Koga T, Nakamura S, Sugahara T, Wei L (2012) Cancer and non-cancer mortality among Inhabitants in the high background radiation area of Yangjiang, China (1979–1998). Health Phys 102:173–181

    Article  Google Scholar 

  78. Tapio S, Schofield PN, Adelmann C, Atkinson MJ, Bard JL, Bijwaard H, Birschwilks M, Dubus P, Fiette L, Gerber G, Gruenberger M, Quintanilla-Martinez L, Rozell B, Saigusa S, Warren M, Watson CR, Grosche B (2008) Progress in updating the European Radiobiology Archives. Int J Radiat Biol 84:930–936

    Article  Google Scholar 

  79. Tolstykh EI, Degteva MO, Vorobiova MI, Peremyslova LM, Shagina NB, Anspaugh LR, Napier BA (2006) Reconstruction of long-lived radionuclide intakes for Techa Riverside residents. Part 2. Cesium-137. Radiat Safety Problems Mayak Production Association Scientific Journal) Special issue 1:68–79 (in Russian, the English abstract is available separately in the issue)

  80. Tolstykh EI, Degteva MO, Peremyslova LM, Shagina NB, Shishkina EA, Krivoshchapov VA, Anspaugh LR, Napier BA (2011) Reconstruction of long-lived radionuclide intakes for Techa Riverside residents: Strotium-90. Health Phys 101:28–47

    Article  Google Scholar 

  81. Uehara Y, Ito Y, Taki K, Nenoi M, Ichinohe K, Nakamura S, Tanaka S, Ogisho Y, Tanaka K, Matsumoto T, Paunesku T, Wolschak GE, Ono T (2010) Gene expression profiles in mouse liver after long-term low-dose-rate irradiation with γ-rays. Radiat Res 174:611–617

    Article  Google Scholar 

  82. UNSCEAR (1958) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation General Assembly official records: Thirteenth session Supplement No. 17 (A/3838), http://www.unscear.org/unscear/en/publications/1958.html

  83. UNSCEAR (1962) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, http://www.unscear.org/unscear/en/publications/1962.html

  84. UNSCEAR (1964) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation General Assembly official records: Nineteenth session Supplement No. 14 (A/5814), http://www.unscear.org/unscear/en/publications/1964.html

  85. UNSCEAR (1969) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, http://www.unscear.org/unscear/en/publications/1969.html

  86. UNSCEAR (1977) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation 1977 Report to the General Assembly, with Annexes, http://www.unscear.org/unscear/en/publications/1977.html

  87. UNSCEAR (1986) Genetic and somatic effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation 1986 Report to the General Assembly, with Annexes General Assembly Official Records: Forty-first session, Supplement No. 16 (A/41/16), http://www.unscear.org/unscear/en/publications/1986.html

  88. UNSCEAR (1988) Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation 1988 Report to the General Assembly, with Annexes, http://www.unscear.org/unscear/en/publications/1986.html

  89. UNSCEAR (1993) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1993 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/1993.html

  90. UNSCEAR (1994) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1994 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/1994.html

  91. UNSCEAR (2000) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/2000_2.html

  92. UNSCEAR (2006) Effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2006 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/2006_1.html

  93. UNSCEAR (2010) Summary of low-dose radiation effects on health, http://www.unscear.org/docs/reports/2010/UNSCEAR_2010_Report_M.pdf

  94. UNSCEAR (2012) United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2012 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/2012.html

  95. UNSCEAR (2013) Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2013 Report to the General Assembly, with Scientific Annexes, http://www.unscear.org/unscear/en/publications/2013_1.html

  96. Vasilenko EK, Khokhryakov VF, Miller SC, Fix JJ, Eckerman K, Choe DO, Gorelov M, Khokhryakov VV, Knyasev V, Krahenbuhl MP, Scherpelz RI, Smetanin M, Suslova K, Vostrotin V (2007) Mayak worker dosimetry study: an overview. Health Phys 93:190–206

    Article  Google Scholar 

  97. Verbiest T, Bouffler S, Nutt SL, Badie C (2015) PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML. Carinogenesis 36:413–419

    Article  Google Scholar 

  98. Vrijheid M, Cardis E, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, Yoshimura T, Ahn YO, Ashmore P, Auvinen A, Bae JM, Engels H, Gulis G, Habib RR, Hosoda Y, Kurtinaitis J, Malker H, Moser M, Rodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K (2007a) The 15-Country Collaborative Study of Cancer Risk Among Radiation Workers in the Nuclear Industry: design, epidemiological methods and descriptive results. Radiat Res 167:361–379

    Article  Google Scholar 

  99. Vrijheid M, Cardis E, Ashmore P, Auvinen A, Bae JM, Engels H, Gilbert E, Gulis G, Habib R, Howe G, Kurtinaitis J, Malker H, Muirhead C, Richardson D, Rodriguez-Artalejo F, Rogel A, Schubauer-Berigan M, Tardy H, Telle-Lamberton M, Usel M, Veress K (2007b) Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. Int J Epidemiol 36:1126–1135

    Article  Google Scholar 

  100. Wang ZY, Boice JD Jr, Wei LX, Beebe GW, Zha YR, Kaplan MM, Tao ZF, Mazon HR 3rd, Zhang SZ, Schneider AB, Tan B, Wesseler TA, Chen D, Ershow AG, Kleinerman RA, Littlefield LG, Preston D (1990) Thyroid nodularity and chromosome aberrations among women in areas of high background radiation in China. J Natl Cancer Inst 82:478–485

    Article  Google Scholar 

  101. Wang Q, Paunesku T, Woloschak G (2010) Tissue and data archives from irradiation experiments conducted at Argonne National Laboratory over a period of four decades. Radiat Environ Biophys 49:317–324

    Article  Google Scholar 

  102. WHO (2013) Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami based on a preliminary dose estimation. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgments

The present paper is based on presentations held at and discussions stimulated during a one-day workshop on DDREF jointly organized by ICRP and JANUS, on May 22, 2015, in Kyoto, Japan. RS and WR acknowledge the contribution of Dr. Linda Walsh (Bundesamt für Strahlenschutz, Germany) toward the planned meta-analysis of epidemiological studies. RERF, Hiroshima and Nagasaki, Japan, is a public interest foundation funded by the Japanese Ministry of Health, Labour and Welfare (MHLW) and the US Department of Energy (USDOE). RERF research is also funded in part through USDOE award DE-HS0000031 to the NAS. This publication is associated with RERF Research Protocol 1-75. The views of the authors do not necessarily reflect those of the two governments. The study at IES is performed under contract with the Aomori Prefectural Government, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Hamada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rühm, W., Woloschak, G.E., Shore, R.E. et al. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. Radiat Environ Biophys 54, 379–401 (2015). https://doi.org/10.1007/s00411-015-0613-6

Download citation

Keywords

  • Radiation risk
  • LNT model
  • DDREF
  • LDEF
  • DREF
  • ICRP