Skip to main content

Advertisement

Log in

Systematic survey of the dose enhancement in tissue-equivalent materials facing medium- and high-Z backscatterers exposed to X-rays with energies from 5 to 250 keV

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The present study has been inspired by the results of earlier dose measurements in tissue-equivalent materials adjacent to thin foils of aluminum, copper, tin, gold, and lead. Large dose enhancements have been observed in low-Z materials near the interface when this ensemble was irradiated with X-rays of qualities known from diagnostic radiology. The excess doses have been attributed to photo-, Compton, and Auger electrons released from the metal surfaces. Correspondingly, high enhancements of biological effects have been observed in single cell layers arranged close to gold surfaces. The objective of the present work is to systematically survey, by calculation, the values of the dose enhancement in low-Z media facing backscattering materials with a variety of atomic numbers and over a large range of photon energies. Further parameters to be varied are the distance of the point of interest from the interface and the kind of the low-Z material. The voluminous calculations have been performed using the PHOTCOEF algorithm, a proven set of interpolation functions fitted to long-established Monte Carlo results, for primary photon energies between 5 and 250 keV and for atomic numbers varying over the periodic system up to Z = 100. The calculated results correlate well with our previous experimental results. It is shown that the values of the dose enhancement (a) vary strongly in dependence upon Z and photon energy; (b) have maxima in the energy region from 40 to 60 keV, determined by the K and L edges of the backscattering materials; and (c) are valued up to about 130 for “International Commission on Radiological Protection (ICRP) soft tissue” (soft tissue composition recommended by the ICRP) as the adjacent low-Z material. Maximum dose enhancement associated with the L edge occurs for materials with atomic numbers between 50 and 60, e.g., barium (Z = 56) and iodine (Z = 53). Such materials typically serve as contrast media in medical X-ray diagnostics. The gradual reduction in the dose enhancement with increasing distance from the material interface, owed to the limited ranges of the emitted secondary electrons, has been documented in detail. The discussion is devoted to practical radiological aspects of the dose enhancement phenomenon. Cytogenetic effects in cell layers closely proximate to surfaces of medium-Z materials might vary over two orders of magnitude, because the dose enhancement is accompanied by the earlier observed about twofold increase in the low-dose RBEM at a tissue-to-gold interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams FH, Norman A, Mello RS, Bass D (1977) Effect of radiation and contrast media on chromosomes. Radiology 124:823–826

    Google Scholar 

  • Amato E, Lizio D, Settineri N, Di Pasquale A (2010) A method to evaluate the dose increase in CT with iodinated contrast medium. Med Phys 37:4249–4256

    Google Scholar 

  • Amato E, Salamone I, Naso S, Bottari A, Gaeta M, Blandino A (2013) Can contrast media increase organ doses in CT examinations? A clinical study. AJR 200:1288–1293

    Google Scholar 

  • Applied Inventions Corporation Software (1995) PHOTCOEF, a nuclear physics utilities program written for IBM PCs and compatible microcomputers. AIC Software, Grafton, MA, USA

  • Beetke E, Bienengräber V, Hafke P, Kittner KH (1972) Tierexperimentelle Untersuchungen über die Wirkung ionisierender Strahlen auf den Kieferknochen bei metallischem Zahnersatz. Radiat Biol Ther 3:367–374

    Google Scholar 

  • Berger MJ, Hubbell JH (1987) XCOM: photon cross sections on a personal computer. National Bureau of Standards, NBSIR 87-3597

  • Burke EA, Garth JC (1976) An algorithm for energy deposition at interfaces. IEEE Trans Nucl Sci NS 23:1838–1843

    Google Scholar 

  • Carlsson GA (1973) Dosimetry at interfaces—theoretical analysis and measurements by means of thermoluminescent LiF at plane interfaces between a low Z material and Al, Cu, Sn or Pb irradiated with 100 to 200 kV Roentgen radiation. Acta Radiol 332:1–64

    Google Scholar 

  • Chadsey WL (1975) POEM: a fast Monte Carlo code for the calculation of x-ray photoemission and transition zone dose and current. AFCRL-TR-75-0324

  • Cheung JYC, Tang F (2007) The calculation of dose enhancement close to platinum implants for skull radiography. Health Phys 93:267–272

    Article  Google Scholar 

  • Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728

    Article  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  ADS  Google Scholar 

  • Cho S, Vassiliev O, Krishnan S (2007) Microscopic estimation of tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT) using diagnostic energy range x-rays. Med Phys 34:2468–2469

    Article  Google Scholar 

  • Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources. Phys Med Biol 54:4889–4905

    Article  Google Scholar 

  • Chofor N, Harder D, Poppe B (2012) Dose perturbation effects near implant surfaces caused by secondary electron transport in photon-beam therapy. 54th Annual meeting of the AAPM, Charlotte, NC

  • Cochran ST, Khodadoust A, Norman A (1980) Cytogenic effects of contrast material in patients undergoing excretory urography. Radiology 136:43–46

    Google Scholar 

  • Da Rosa LAR, Seidenbusch M, Regulla D (1999) Dose profile assessment at gold-tissue interfaces using TSEE. Radiat Prot Dosim 85:433–436

    Article  Google Scholar 

  • Das IJ (1997) Forward dose perturbation at high atomic number interfaces in kilovoltage x-ray beams. Med Phys 24:1781–1787

    Article  Google Scholar 

  • Das IJ, Chopra KL (1995) Backscatter dose perturbation in kilovoltage x-ray beams at high atomic number interfaces. Med Phys 22:767–773

    Article  Google Scholar 

  • Das IJ, Kahn FM (1989) Backscatter dose perturbation at high atomic number interfaces in megavoltage photon beams. Med Phys 16:367–375

    Article  Google Scholar 

  • Das IJ, Kase KR, Meigooni AS, Khan FM, Werner BL (1990) Validity of transition zone dosimetry at high atomic number interfaces in megavoltage photon beams. Med Phys 17:10–16

    Article  Google Scholar 

  • Dawson P, Penhaligon M, Smith E, Saunders J (1987) Iodinated contrast agents as radiosensitizers. Br J Radiol 60:201–203

    Article  Google Scholar 

  • Farahani M, Eichmiller FC, McLaughlin WL (1990) Measurement of absorbed doses near metal and dental metal interfaces irradiated by x- and gamma-ray therapy beams. Phys Med Biol 35:369–385

    Article  Google Scholar 

  • Garth JC (1978) Diffusion equation model for kilovolt electron transport at X-irradiated interfaces. IEEE Trans Nucl Sci 25:1598–1906

    Article  ADS  Google Scholar 

  • Garth JC (1986) An algorithm for calculating dose profiles in multi-layered devices using personal computer. IEEE Trans Nucl Sci NS 33:1266–1270

    Google Scholar 

  • Garth JC (1989) Calculation of dose enhancement in device structures. Nucl Instrum Meth B 40(41):1266–1270

    Article  ADS  Google Scholar 

  • Garth JC, Chadsey WL, Sheppard Jr RL (1975) Monte Carlo analysis of dose profiles near photon irradiated material interfaces. IEEE Trans Nucl Sci NS 22:2562–2567

    Google Scholar 

  • Gorski M, Kwart L (1962) Zur Behandlung der Unterkiefernekrosen nach Strahlentherapie. Dtsch Stomat 12:625–630

    Google Scholar 

  • Habara K, Shimozato Y, Hayashi N, Yasu K, Matsuura K, Furukawa T, Kawanomi R, Obata Y (2011) Dosimetric perturbation due to scattered rays released by a gold marker used for tumor tracking in external radiotherapy. Jap J Radiol Technol 67:1164–1173

    Article  Google Scholar 

  • Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  Google Scholar 

  • Harder D (2009) What can we learn from RBE effects in biological dosimetry? (Invited Paper) IFMBE proceedings, world congress on medical physics and biomedical engineering, Munich 2009 (Dössel/Schlegel Eds.). Springer 2009. ISBN 978-3-642-03897-6 (vol I–XIII) (Manuscript available from the author)

  • Harder D, Friedland W, Greinert R, Regulla D (2004) Radiobiological significance of high local energy depositions in chromatin and of their spatial and temporal correlation by electron tracks. International workshop on radiation health effects at low doses or low dose rates. Symposium organized by H. Paretzke, GSF—National Research Center for Environment and Health, Institute of Radiation Protection, Neuherberg, Germany, 16–18 February 2004 (Manuscript available from the authors)

  • ICRU, International Commission on Radiation Units and Measurements (1984) Stopping powers for electrons and positrons. ICRU Publication 37

  • ISO, International Standards Organization (1996) X and gamma reference radiations for calibrating dosemeters and doserate-meters and for determining their response as a function of photon energy. ISO Standard 4037-1

  • Jones BL, Krishnan S, Cho SH (2010) Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys 37:3809–3816

    Article  Google Scholar 

  • Jost G, Golfier S, Pietsch H, Lengsfeld P, Voth M, Schmid TE, Eckardt-Schupp F, Schmid E (2009) The influence of x-ray contrast agents in computed tomography on the induction of dicentrics and γ-H2AX foci in lymphocytes of human blood samples. Phys Med Biol 54:6029–6039

    Article  Google Scholar 

  • Leung MKK, Chow JCL, Chithrani BD, Lee MJG, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38:624–631

    Article  Google Scholar 

  • Lloyd SAM, Ansbacher W (2013) Evaluation of an analytic linear Boltzmann transport equation solver for high density inhomogeneities. Med Phys 40:011707-1–011707-5

    Google Scholar 

  • Marker P, Siemssen SJ, Bastholt L (1997) Osseointegrated implants for prothetic rehabilitation after treatment of cancer of the oral cavity. Acta Oncol 36:37–40

    Article  Google Scholar 

  • Mesa AV, NormanA SolbergTD, Demarco JJ, Smathers JB (1999) Dose distributions using kilovoltage x-rays and dose enhancement from iodine contrast agents. Phys Med Biol 44:1955–1968

    Article  Google Scholar 

  • Mitchell G, Kron T, Back M (1998) High dose behind inhomogeneities during medium-energy x-ray irradiation. Phys Med Biol 43:1343–1350

    Article  Google Scholar 

  • Murthy MSS, Lakshmanan AR (1976) Dose enhancement due to backscattered secondary electrons at the interface of two media. Radiat Res 67:215–223

    Article  Google Scholar 

  • Nahrstedt U (1995) The GSF Secondary Standard Dosimetry Laboratory for photon and beta radiation. GSF—National Research Center for Environment and Health, Neuherberg, Germany, Report 9/95

  • Nath R, Yue N, Weinberger J (1999) Dose perturbations by high atomic number materials in intravascular brachytherapy. Phys Medica XV 3:238

    Google Scholar 

  • Nelson JA, Livingston GK, Moon RG (1982) Mutagenic evaluation of radiographic contrast media. Invest Radiol 17:1983–1985

    Article  Google Scholar 

  • Ngwa W, Makrigiorgos GM, Berbeco RI (2012) Gold nanoparticle enhancement of stereotactic radiosurgery for neovascular age-related macular degeneration. Phys Med Biol 57:6371–6380

    Article  Google Scholar 

  • Niroomand-Rad A, Razavi R, Thobejane S, Harter KW (1996) Radiation dose perturbation at tissue-titanium dental interfaces in head and neck cancer patients. Int J Radiat Oncol Biol Phys 34:475–480

    Article  Google Scholar 

  • NIST, National Institute of Standards and Technology (NIST), Physical Measurement Laboratory (2012) http://physics.nist.gov/PhysRefData/XrayMassCoef

  • Paretzke HG (1987) Radiation track structure. In: Freeman CR (ed) Kinetics of nonhomogeneous processes. Wiley, New York, pp 89–170

  • Petel M, Comby G, Quidort J, Barthe J (1983) Multi-needle counter with cathodic focusing for TSEE dosimetry. Radiat Prot Dosim 4:171–173

    Google Scholar 

  • PTB, Physikalisch-Technische Bundesanstalt (2000) Catalogue of X-ray spectra and their characteristic data—ISO and DIN radiation qualities, therapy and diagnostic radiation qualities, unfiltered X-ray spectra. PTB-Bericht Dos-34

  • Regulla D, Leischner U (1983) Comparing interface dosimetry with conventional methods and TSEE. Radiat Prot Dosim 4:174–176

    Google Scholar 

  • Regulla DF, Hieber LB, Seidenbusch MC (1998) Physical and biological interface dose effects in tissue due to X-ray induced release of secondary radiation from metallic gold surfaces. Radiat Res 150:92–100

    Article  Google Scholar 

  • Regulla DF, Friedland W, Hieber L, Panzer W, Seidenbusch M, Schmid E (2000a) Spatially limited effects of dose and LET enhancement in tissue for diagnostic X-ray qualities. Radiat Prot Dosim 90:159–163

    Article  Google Scholar 

  • Regulla D, Hieber L, Seidenbusch M (2000b) Erhöhung von Dosis und biologischen Wirkungen durch rückgestreute Elektronen aus röntgenbestrahlten Materialien höherer Ordnungszahl. Z Med Phys 10:52–62

    Google Scholar 

  • Regulla D, Panzer W, Schmid E, Stephan G, Harder D (2001) Detection of elevated RBE in human lymphocytes exposed to secondary electrons released from X-irradiated metal surfaces. Radiat Res 155:744–747

    Article  Google Scholar 

  • Regulla D, Schmid E, Friedland W, Panzer W, Heinzmann U, Harder D (2002) Enhanced values of RBE and H-ratio for cytogenetic effects caused by secondary electrons from an X-irradiated gold surface. Radiat Res 158:505–515

    Article  Google Scholar 

  • Reniers B, Liu D, Rusch T, Verhaegen F (2008) Calculation of relative biological effectiveness of a low-energy electronic brachytherapy source. Phys Med Biol 53:7125–7135

    Article  Google Scholar 

  • Rosengren B, Wulff L, Carlsson E, Carlsson J, Strid KG, Montelius A (1993) Backscatter radiation at tissue-titanium interfaces. Biological effects from diagnostic 65 kVP X-rays. Acta Oncol 32:73–77

    Article  Google Scholar 

  • Sauer OA (1995) Dosisverteilungen an Material-Grenzflächen bei energiereichen Röntgenstrahlen. Z Med Phys 5:156–162

    Google Scholar 

  • Seelentag WW, Panzer W, Drexler G, Platz L, Santner F (1979) A catalogue of spectra for the calibration of dosemeters. GSF, Report 560

    Google Scholar 

  • Seidenbusch M (1993) Grenzflächen-Dosimetrie mit Hilfe der Thermisch Stimulierten Exoelektronen-Emission. Thesis, Technical University Munich

  • Seidlitz R (1997) Vergleichende experimentelle und rechnerische Untersuchungen zur Dosisverteilung in Gewebe, das an Material höherer Ordnungszahl grenzt. Thesis, Technical University Munich

  • Seldin HM, Seldin D, Rakower W, Selman AJ (1955) Radio-osteomyelitis of the jaw. Oral Surg 13:112

    Google Scholar 

  • Shimozato T, Igarashi Y, Itoh Y, Yamamoto N, Okodaira K, Tabushi K, Obata Y, Komori M, Naganawa S, Ueda M (2011) Scattered radiation from dental metallic crowns in head and neck radiotherapy. Phys Med Biol 56:5525–5534

    Article  Google Scholar 

  • Spiers FW (1968) Transition-zone dosimetry. In: Attix FH, Tochilin E (eds) Radiation Dosimetry, vol 3. Academic Press, New York, pp 809–867

    Google Scholar 

  • Storm E, Israel HI (1967) Photon cross sections from 0.001 to 100 MeV. Los Alamos Scientific Laboratory, LA-3753, UC-34-Physics, TID-4500

  • Veigele WJ, Briggs E, Bates L, Henry, EM, Brackwell B (1971) X-Ray cross section compilation from 0.1 keV to 1 MeV. Kaman Sciences Corporation, DNA 2433 F, KN-71-431(R)

  • Verhaegen F, Seuntjens J (1995) Monte Carlo study of electron spectra and dose from backscattered radiation in the vicinity of media interfaces for monoenergetic photons of 50–1250 keV. Radiat Res 143:334–342

    Article  Google Scholar 

  • Wang R, Pillai K, Jones PK (1998) Dosimetric measurement of scattered radiation from dental implants in simulated head and neck radiotherapy. Int J Oral Maxillofac Implants 13:197–203

    Google Scholar 

  • Werner BL, Das IJ, Salk WN (1990) Dose perturbations at interfaces in photon beams. Med Phys 17:212–226

    Article  Google Scholar 

  • Wieslander E, Knöös T (2003) Dose perturbation in the presence of metallic implants: treatment planning system versus Monte Carlo simulations. Phys Med Biol 48:3295–3330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Seidenbusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidenbusch, M., Harder, D. & Regulla, D. Systematic survey of the dose enhancement in tissue-equivalent materials facing medium- and high-Z backscatterers exposed to X-rays with energies from 5 to 250 keV. Radiat Environ Biophys 53, 437–453 (2014). https://doi.org/10.1007/s00411-014-0524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-014-0524-y

Keywords

Navigation