Skip to main content
Log in

Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The distributions of energy depositions of electrons in semi-infinite bulk protein and the radial dose distributions of point-isotropic mono-energetic electron sources [i.e., the so-called dose point kernel (DPK)] in protein have been systematically calculated in the energy range below 20 keV, based on Monte Carlo methods. The ranges of electrons have been evaluated by extrapolating two calculated distributions, respectively, and the evaluated ranges of electrons are compared with the electron mean path length in protein which has been calculated by using electron inelastic cross sections described in this work in the continuous-slowing-down approximation. It has been found that for a given energy, the electron mean path length is smaller than the electron range evaluated from DPK, but it is large compared to the electron range obtained from the energy deposition distributions of electrons in semi-infinite bulk protein. The energy dependences of the extrapolated electron ranges based on the two investigated distributions are given, respectively, in a power-law form. In addition, the DPK in protein has also been compared with that in liquid water. An evident difference between the two DPKs is observed. The calculations presented in this work may be useful in studies of radiation effects on proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adesida H, Shimizu R, Everhart TE (1980) A study of electron penetration in solids using a direct Monte Carlo approach. J Appl Phys 52(11):5962–5969

    Article  ADS  Google Scholar 

  • Akkerman A, Akkerman E (1999) Characteristics of electron inelastic interactions in organic compounds and water over the energy range 20–10000 eV. J Appl Phys 86(10):5809–5916

    Article  ADS  Google Scholar 

  • Akkerman A, Murat M, Barak J (2009) Monte Carlo calculations of electron transport in silicon and related effects for energies of 0.02–200 keV. J Appl Phys 106(11): 113703–1–12

    Google Scholar 

  • Ashely JC (1990) Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter. J Electron Spectrosc Relat Phenom 50:323–334

    Article  Google Scholar 

  • Ashely JC, Anderson VE (1981) Interaction of low-energy electrons with silicon dioxide. J Electron Spectrosc Relat Phenom 24:127–148

    Article  Google Scholar 

  • Ashley JC (1988) Interaction of low-energy electrons with condensed matter: stopping powers and inelastic mean free paths from optical data. J Electron Spectrosc Relat Phenom 46:199–214

    Article  Google Scholar 

  • Berovic N, Pratontep S, Bryant A, Montouris A, Green RG (2002) The kinetics of radiation damage to the protein luciferase and recovery of enzyme activity after irradiation. Radiat Res 157(2):122–127

    Article  Google Scholar 

  • Bongeler R, Golla U, Kässens M, Reimer L, Schindler B, Senkel R, Spranck M (1993) Electron-specimen interactions in low-voltage scanning electron microscopy. Scanning 15(1):1–18

    Article  Google Scholar 

  • Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H, Pathak A (2011) Monte Carlo calculations of low-energy electron dose-point-kernels in water using different stopping power approximations. Nucl Instrum Meth B 269(14):1650–1654

    Article  ADS  Google Scholar 

  • Brown JH (2006) Breaking symmetry in protein dimers: designs and functions. Protein Sci 15:1–13

    Article  Google Scholar 

  • Ding ZJ, Shimizu R (1996) A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning 18(2):92–113

    Article  Google Scholar 

  • Dingfelder M, Hantke D, Inokuti M, Paretzke HG (1998) Electron inelastic-scattering cross sections in liquid water. Radiat Phys Chem 53:1–18

    Article  ADS  Google Scholar 

  • Dingfelder M, Ritchie RH, Turner JE, Friedland W, Paretzke HG, Hamm RN (2008) Comparisons of calculations with PARTRAC and NOREC: transport of electrons in liquid water. Radiat Res 169(5):584–595

    Article  Google Scholar 

  • Emfietzoglou D (2003) Inelastic cross-sections for electron transport in liquid water: a comparison of dielectric models. Radiat Phys Chem 66(6):373–385

    Article  ADS  Google Scholar 

  • Emfietzoglou D, Nikjoo H (2005) The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Radiat Res 163(1):98–111

    Article  Google Scholar 

  • Emfietzoglou D, Karava K, Papamichael G, Moscovitch M (2003) Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. Phys Med Biol 48(15):2355–2371

    Article  Google Scholar 

  • Emfietzoglou D, Cucinotta FA, Nikjoo H (2005) A complete dielectric model for liquid water: a solution of the Bethe ridge problem. Radiat Res 164(2):202–211

    Article  Google Scholar 

  • Emfietzoglou D, Kyriakou I, Abril I, Garcia-Molina R, Nikjoo H (2012a) Inelastic scattering of low-energy electrons in liquid water computed from optical-data models of the Bethe surface. Int J Radiat Biol 88(1–2):22–28

    Article  Google Scholar 

  • Emfietzoglou D, Kyriakou I, Garcia-Molina R, Abril I, Kostarelos K (2012b) Quasi first-principles Monte Carlo modeling of energy dissipation by low-energy electron beams in multi-walled carbon nanotube materials. Appl Phys Lett 100 (9):093113–1–5

    Google Scholar 

  • Emfietzoglou D, Kyriakou I, Garcia-Molina R, Abril I (2013) The effect of static many-body local-field corrections to inelastic electron scattering in condensed media. J Appl Phys 114(14):144907–1–10

    Google Scholar 

  • Fernández-Varea JM, Mayol R, Liljequist D, Salvat F (1993) Inelastic scattering of electrons in solids from a generalized oscillator strength model using optical and photoelectric data. J Phys Cond Matter 5:3593–3610

    Article  ADS  Google Scholar 

  • Fernández-Varea JM, Liljequist D, Csillag S, Räty R, Salvat F (1996) Monte Carlo simulation of 0.1–100 keV electron and positron transport in solids using optical data and partial wave methods. Nucl Instrum Meth B 108(1-2):35–50

    Google Scholar 

  • Fernández-Varea JM, Llovet X, Salvat F (2005) Cross sections for electron interactions in condensed matter. Surf Interface Anal 37(11):824–832

    Article  Google Scholar 

  • Harmon JT, Nielsen TB, Kempner ES (1985) Molecular weight determinations from radiation inactivation. Meth Enzymol 117:65–94

    Google Scholar 

  • Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    Article  ADS  Google Scholar 

  • Jablonski A, Salvat F, Powell CJ (2003) NIST electron elastic scattering cross-section database-Version 3.1, National Institute of Standards and Technology, Gaithersburg, MD

  • Joy DC, Joy CS, (1996) SEMATECH Report, TT#96063130 A-TR

  • Kempner ES (2001) Effects of high-energy electrons and gamma rays directly on protein molecules. J Pharm Sci 90(10):1637–1646

    Article  Google Scholar 

  • Kempner ES (2011) Direct effects of ionizing radiation on macromolecules. J Polym Sci B Polym Phys 49(12):827–831

    Article  ADS  Google Scholar 

  • Kotera M, Murata K, Nagami K (1981) Monte Carlo simulation of 1–10-keV electron scattering in an aluminum target. J Appl Phys 52(12):7403–7408

    Article  ADS  Google Scholar 

  • Kurniawan O, Ong VKS (2007) Investigation of range-energy relationships for low-energy electron beams in silicon and gallium nitride. Scanning 29(6):280–286

    Article  Google Scholar 

  • Lazaridis T, Karplus M (2000) Effective energy functions for protein structure prediction. Curr Opin Struct Biol 10(2):139–145

    Article  Google Scholar 

  • Lidzey DG, Berovic N, Chittock RS, Beynon TD, Wharton CW, Jckson JB, Parkinson NS (1995) A critical analysis of the use of radiation inactivation to measure the mass of protein. Radiat Res 143(2):181–186

    Article  Google Scholar 

  • Lowe ME, Kempner ES (1982) Radiation inactivation of the glycoprotein, invertase. J Biol Chem 257(21):12478–12480

    Google Scholar 

  • Murata K (1974) Spatial distribution of backscattered electrons in the scanning electron microscopy and electron microprobe. J Appl Phys 45(9):4110–4117

    Article  ADS  Google Scholar 

  • Murata K, Kyser FD, Ting CH (1981) Monte Carlo simulation of fast secondary electron production in electron beam resists. J Appl Phys 52(7):4396–4405

    Article  ADS  Google Scholar 

  • Nave C (1995) Radiation damage in protein crystallography. Radiat Phys Chem 45(3):483–490

    Article  ADS  Google Scholar 

  • Nikjoo H (2003) Radiation track and DNA damage. Iran J Radiat Res 1(1):3–16

    Google Scholar 

  • Nikjoo H, Goodhead DT, Charlton DE, Paretzke HG (1989) Energy deposition in small cylindrical targets by ultrasoft x-rays. Phys Med Biol 34(6):691–705

    Article  Google Scholar 

  • Nikjoo H, Goodhead DT, Charlton DE, Paretzke HG (1991) Energy deposition in small cylindrical targets by monoenergetic electrons. Int J Rad Biol 60(5):739–756

    Article  Google Scholar 

  • Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA (2006) Track-structure codes in radiation research. Radiat Meas 41(9–10):1052–1074

    Article  Google Scholar 

  • Nikjoo H, Emfietzoglou D, Watanabe R, Uehara S (2008) Can Monte Carlo track structure codes reveal reaction mechanism in DNA damage and improve radiation therapy. Radiat Phys Chem 77(10–12):1270–1279

    Article  ADS  Google Scholar 

  • Ochkur VI (1965) Ionization of the hydrogen atom by electron impact with allowance for the exchange. Sov Phys JETP 20(5):1175–1178

    Google Scholar 

  • O’Neill P, Stevens DL, Garman EF (2002) Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective. J Synchrotron Rad 9(6):329–332

    Article  Google Scholar 

  • Öztürk N, Williamson W (1993) Monte Carlo simulation of keV electron transport in solid media. J Appl Phys 74(7):4723–4728

    Article  ADS  Google Scholar 

  • Penn DR (1987) Electron mean-free-path calculations using a model dielectric function. Phys Rev B 35(2):482–486

    Article  ADS  MathSciNet  Google Scholar 

  • Rauth AM, Simpson JA (1964) The energy loss of electrons in solids. Radiat Res 22(4):643–661

    Google Scholar 

  • Ronan RS, Heinz WF, Kempner ES (1996) High-energy electron irradiation of protein and nucleic acids: collisional stopping power and average energy loss. Radiat Environ Biophys 35(3):159–162

    Article  Google Scholar 

  • Tan ZY, Xia YY, Zhao MW, Liu XD, Li F, Huang BD, Ji YJ (2004a) Electron stopping power and mean free path in organic compounds over the energy range of 20–10,000 eV. Nucl Instrum Meth B 222(1–2):27–43

    Article  ADS  Google Scholar 

  • Tan ZY, Xia YY, Zhao MW, Liu XD, Li F, Ji YJ, Huang BD (2004b) Cross sections of electron inelastic interactions in DNA. Radiat Environ Biophys 43(3):173–182

    Article  Google Scholar 

  • Tan ZY, Xia YY, Zhao MW, Liu XD (2006) Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20–20,000 eV. Radiat Environ Biophys 45(2):135–143

    Article  Google Scholar 

  • Tan ZY, Dong L, Tang F (2012) Monte Carlo calculations of characteristic quantities of low-energy electron irradiation to spacecraft dielectrics. Nucl Instrum Meth B 285:86–93

    Article  ADS  Google Scholar 

  • Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K, Berendzen J (1998) Class-directed structure determination: foundation for a Protein structure initiative. Protein Sci 7:1851–1856

    Article  Google Scholar 

  • Uehara S, Nikjoo H, Goodhead DT (1993) Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region. Phys Med Biol 37(12):1841–1858

    Article  Google Scholar 

  • van Attikum H, Gasser SM (2009) Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 19(5):207–217

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. D. C. Joy and C. S. Joy of the University of Tennessee for providing their database of the compiled experimental data of electron backscattered coefficients. This work was supported by the Foundation of Ministry of Education of China under Grant No.20120131110012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Z., Liu, W. Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein. Radiat Environ Biophys 53, 427–435 (2014). https://doi.org/10.1007/s00411-014-0518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-014-0518-9

Keywords

Navigation