Skip to main content

Microbeam irradiation of C. elegans nematode in microfluidic channels

Abstract

To perform high-throughput studies on the biological effects of ionizing radiation in vivo, we have implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows the immobilization of worms with minimal stress for a rapid and controlled microbeam irradiation of multiple samples in parallel. Adapted from an established design, our microfluidic clamp consists of 16 tapered channels with 10-μm-thin bottoms to ensure charged particle traversal. Worms are introduced into the microfluidic device through liquid flow between an inlet and an outlet, and the size of each microchannel guarantees that young adult worms are immobilized within minutes without the use of anesthesia. After site-specific irradiation with the microbeam, the worms can be released by reversing the flow direction in the clamp and collected for analysis of biological endpoints such as repair of radiation-induced DNA damage. For such studies, minimal sample manipulation and reduced use of drugs such as anesthetics that might interfere with normal physiological processes are preferable. By using our microfluidic device that allows simultaneous immobilization and imaging for irradiation of several whole living samples on a single clamp, here we show that 4.5-MeV proton microbeam irradiation induced DNA damage in wild-type C. elegans, as assessed by the formation of Rad51 foci that are essential for homologous repair of radiation-induced DNA damage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Alpi A, Pasierbek P, Gartner A, Loidl J (2003) Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma 112(1):6–16

    Article  Google Scholar 

  • Bertucci A, Pocock RD, Randers-Pehrson G, Brenner DJ (2009) Microbeam irradiation of the C. elegans nematode. J Radiat Res 50(Suppl A):A49–A54

    Article  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    Google Scholar 

  • Chung K, Crane MM, Lu H (2008) Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat Methods 5(7):637–643

    Article  Google Scholar 

  • Duerr JS, Frisby DL, Gaskin J, Duke A, Asermely K, Huddleston D, Eiden LE, Rand JB (1999) The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci 19(1):72–84

    Google Scholar 

  • Durante M, Friedl AA (2011) New challenges in radiobiology research with microbeams. Radiat Environ Biophys 50(3):335–338

    Article  Google Scholar 

  • Garty G, Ross GJ, Bigelow AW, Randers-Pehrson G, Brenner DJ (2006) Testing the stand-alone microbeam at Columbia University. Radiat Prot Dosimetry 122(1–4):292–296

    Google Scholar 

  • Geard CR, Jenkins-Baker G, Marino SA, Ponnaiya B (2002) Novel approaches with track segment alpha particles and cell co-cultures in studies of bystander effects. Radiat Prot Dosimetry 99(1–4):233–236

    Article  Google Scholar 

  • Gilleland CL, Rohde CB, Zeng F, Yanik MF (2010) Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat Protoc 5(12):1888–1902

    Article  Google Scholar 

  • Goodhead DT (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 65(1):7–17

    Article  Google Scholar 

  • Greiss S, Schumacher B, Grandien K, Rothblatt J, Gartner A (2008) Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family. BMC Genomics 9:334

    Article  Google Scholar 

  • Greubel C, Hable V, Drexler GA, Hauptner A, Dietzel S, Strickfaden H, Baur I, Krucken R, Cremer T, Friedl AA, Dollinger G (2008) Quantitative analysis of DNA-damage response factors after sequential ion microirradiation. Radiat Environ Biophys 47(4):415–422

    Article  Google Scholar 

  • Heng X, Erickson D, Baugh LR, Yaqoob Z, Sternberg PW, Psaltis D, Yang C (2006) Optofluidic microscopy-a method for implementing a high resolution optical microscope on a chip. Lab Chip 6(10):1274–1276

    Article  Google Scholar 

  • Hulme SE, Shevkoplyas SS, Apfeld J, Fontana W, Whitesides GM (2007) A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip 7(11):1515–1523

    Article  Google Scholar 

  • Karbowski J, Cronin CJ, Seah A, Mendel JE, Cleary D, Sternberg PW (2006) Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. J Theor Biol 242(3):652–669

    MathSciNet  Article  Google Scholar 

  • Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26(3):583–594

    Article  Google Scholar 

  • Kim N, Dempsey CM, Zoval JV, Sze J-Y, Madou MJ (2007) “Automated microfluidic compact disc (CD) cultivation system of Caenorhabditis elegans”. Sens Actuators B Chem 122:511

    Article  Google Scholar 

  • Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86(1):165–172

    Article  Google Scholar 

  • Lange D, Storment CW, Conley CA, Kovacs GTA (2005) A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space. Sens Actuators B 107:904–914

    Article  Google Scholar 

  • Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377(6547):351–354

    ADS  Article  Google Scholar 

  • Lewis JA, Wu CH, Berg H, Levine JH (1980) The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95(4):905–928

    Google Scholar 

  • Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21(3):397–404

    MathSciNet  Article  Google Scholar 

  • Martin JS, Winkelmann N, Petalcorin MI, McIlwraith MJ, Boulton SJ (2005) RAD-51-dependent and -independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol Cell Biol 25(8):3127–3139

    Article  Google Scholar 

  • Morgan WF (2003a) Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159(5):567–580

    Article  Google Scholar 

  • Morgan WF (2003b) Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159(5):581–596

    Article  Google Scholar 

  • Mosconi M, Giesen U, Langner F, Mielke C, Dalla Rosa I, Dirks WG (2011) 53BP1 and MDC1 foci formation in HT-1080 cells for low- and high-LET microbeam irradiations. Radiat Environ Biophys 50(3):345–352

    Article  Google Scholar 

  • O’Rourke EJ, Conery AL, Moy TI (2009) Whole-animal high-throughput screens: the C. elegans model. Methods Mol Biol 486:57–75

    Article  Google Scholar 

  • Rinaldo C, Bazzicalupo P, Ederle S, Hilliard M, La Volpe A (2002) Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development. Genetics 160(2):471–479

    Google Scholar 

  • Rohde CB, Zeng F, Gonzalez-Rubio R, Angel M, Yanik MF (2007) Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc Natl Acad Sci USA 104(35):13891–13895

    ADS  Article  Google Scholar 

  • Rothman JH, Singson A (2012) Caenorhabditis elegans. Cell Biol Physiol

  • Sakashita T, Takanami T, Yanase S, Hamada N, Suzuki M, Kimura T, Kobayashi Y, Ishii N, Higashitani A (2010) Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. J Radiat Res 51(2):107–121

    Article  Google Scholar 

  • Shi W, Wen H, Lin B, Qin J (2011) Microfluidic platform for the study of Caenorhabditis elegans. Top Curr Chem 304:323–338

    Article  Google Scholar 

  • Shinohara A, Ogawa T (1995) Homologous recombination and the roles of double-strand breaks. Trends Biochem Sci 20(10):387–391

    Article  Google Scholar 

  • Stiernagle T (1999) C. elegans maintenance. C. elegans: a practical approach. I. A. Hope. Oxford University Press, Oxford

  • Sugimoto T, Dazai K, Sakashita T, Funayama T, Wada S, Hamada N, Kakizaki T, Kobayashi Y, Higashitani A (2006) Cell cycle arrest and apoptosis in Caenorhabditis elegans germline cells following heavy-ion microbeam irradiation. Int J Radiat Biol 82(1):31–38

    Article  Google Scholar 

  • Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265(5176):1241–1243

    ADS  Article  Google Scholar 

  • Takanami T, Sato S, Ishihara T, Katsura I, Takahashi H, Higashitani A (1998) Characterization of a Caenorhabditis elegans recA-like gene Ce-rdh-1 involved in meiotic recombination. DNA Res 5(6):373–377

    Article  Google Scholar 

  • Takanami T, Mori A, Takahashi H, Higashitani A (2000) Hyper-resistance of meiotic cells to radiation due to a strong expression of a single recA-like gene in Caenorhabditis elegans. Nucleic Acids Res 28(21):4232–4236

    Article  Google Scholar 

  • Ward JF (1995) Radiation mutagenesis: the initial DNA lesions responsible. Radiat Res 142(3):362–368

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Vol 37(5):550–575

    Article  Google Scholar 

  • Zeng F, Rohde CB, Yanik MF (2008) Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 8(5):653–656

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) under Grant: 5 P41 EB002033 and an EMBO long-term fellowship and HFSPO long-term fellowship to M.G. We are grateful to the Caenorhabditis Genetics Center for providing the mutant strain. We thank the RARAF team for their scientific support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Buonanno.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buonanno, M., Garty, G., Grad, M. et al. Microbeam irradiation of C. elegans nematode in microfluidic channels. Radiat Environ Biophys 52, 531–537 (2013). https://doi.org/10.1007/s00411-013-0485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-013-0485-6

Keywords

  • Microbeam irradiation with microfluidic devices
  • C. elegans microbeam irradiation
  • Small animal microbeam irradiation
  • Rad51 foci in C. elegans