Skip to main content
Log in

Current status of biodosimetry based on standard cytogenetic methods

  • Review
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Knowledge about dose levels in radiation protection is an important step for risk assessment. However, in most cases of real or suspected accidental exposures to ionizing radiation (IR), physical dosimetry cannot be performed for retrospective estimates. In such situations, biological dosimetry has been proposed as an alternative for investigation. Briefly, biodosimetry can be defined as individual dose evaluation based on biological endpoints induced by IR (so-called biomarkers). The relationship between biological endpoints and absorbed dose is not always straightforward: nausea, vomiting and diarrhoea, for example, are the most well-known biological effects of individual irradiation, but a precise correlation between those symptoms and absorbed dose is hardly achieved. The scoring of unstable chromosomal-type aberrations (such as dicentrics and rings) and micronuclei in mitogen-stimulated peripheral blood, up till today, has been the most extensively biodosimetry assay employed for such purposes. Dicentric assay is the gold standard in biodosimetry, since its presence is generally considered to be specific to radiation exposure; scoring of micronuclei (a kind of by-product of chromosomal damages) is easier and faster than that of dicentrics for dose assessment. In this context, the aim of this work is to present an overview on biodosimetry based on standard cytogenetic methods, highlighting its advantages and limitations as tool in monitoring of radiation workers’ doses or investigation into accidental exposures. Recent advances and perspectives are also briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amaral A (2002) Trends in biological dosimetry: an overview. Braz Arch Biol Tech 45:119–124

    Google Scholar 

  • Amaral A (2005) Physical and biological dosimetry for risk perception in radioprotection. Braz Arch Biol Tech 48:229–234

    Google Scholar 

  • Amaral A, Fernandes TS, Cavalcanti MB (2008) Bioindicators in radiation protection. Braz Arch Biol Tech 51:91–96

    Google Scholar 

  • Anderson RM, Marsden SJ, Paice SJ, Bristow AE, Kadhim MA, Griffin CS, Goodhead DT (2003) Transmissible and nontransmissible complex chromosome aberrations characterized by three-color and mFISH define a biomarker of exposure to high-LET a particles. Rad Res 159:40–48

    Article  Google Scholar 

  • Bahl R, Arora S, Nath N, Mathur M, Shukla NK, Ralhan R (2000) Novel polymorphism in p21waf1/cip1 cyclin dependent kinase inhibitor gene: association with human esophageal cancer. Oncog 19:323–328

    Article  Google Scholar 

  • Ballarini F, Biaggi M, Edwards A, Ferrari A, Ottolenghi A, Pelliccioni M, Scannicchio D (2003) Estimating mixed field effects: an application supporting the lack of a non-linear component for chromosome aberration induction by Neutrons. Rad Prot Dosim 103(1):19–28

    Google Scholar 

  • Bauchinger M (1998) Retrospective dose reconstruction of human radiation exposure by FISH/chromosome painting. Mutat Res 404:89–96

    Google Scholar 

  • Belloni P, Meschini R, Lewinska D, Palitti F (2008) Apoptosis preferentially eliminates irradiated G0 human lymphocytes bearing dicentrics chromosomes. Rad Res 169:181–187

    Article  Google Scholar 

  • Berger ME, Christensen DM, Lowry PC, Jones OW, Wiley AL (2006) Medical management of radiation injuries: current approaches. Occup Med 56:162–172

    Article  Google Scholar 

  • Bigbee WL, Fuscoe JC, Grant SG, Jones IM, Gorvad AE, Harrington-Brock K, Strout CL, Thomas CB, Moore MM (1998) Human in vivo somatic mutation measured at two loci: individuals with stably elevated background erythrocyte glycophorin A (gpa) variant frequencies exhibit normal T-lymphocyte hprt mutant frequencies. Mutat Res 397:119–136

    Google Scholar 

  • Bonassi S, Au WW (2002) Biomarkers in molecular epidemiology studies for health risk prediction. Mutat Res 511:73–86

    Article  Google Scholar 

  • Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R, Bigatti MP, Bolognesi C, Cebulska-Wasilewska A, Fabianova E, Fucic A, Hagmar L, Joksic G, Martelli A, Migliore L, Mirkova E, Scarfi MR, Zijno A, Norppa A, Fenech M (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinog 28(3):625–631

    Google Scholar 

  • Bothwell AM, Whitehouse CA, Tawn EJ (2000) The application of FISH for chromosome aberration analysis in relation to radiation exposure. Rad Prot Dosim 88(1):7–14

    Google Scholar 

  • Braselmann H, Kulka U, Baumgartner A, Eder C, Müller I, Figel M, Zitzelsberger H (2005) SKY and FISH analysis of radiation-induced chromosome aberrations: a comparison of whole and partial genome analysis. Mutat Res 578:124–133

    Google Scholar 

  • Camparoto ML, Ramalho AT, Natarajan AT, Curado MP, Sakamoto-Hojo ET (2003) Translocation analysis by the FISH-painting method for retrospective dose reconstruction in individuals exposed to ionizing radiation 10 years after exposure. Mutat Res 530:1–7

    Google Scholar 

  • Carloni M, Meschini R, Ovidi L, Palitti F (2001) PHA-induced cell proliferation rescues human peripheral human blood lymphocytes from X-ray-induced apoptosis. Mutagen 16(2):115–120

    Article  Google Scholar 

  • Cavalcanti MB, Amaral AJ, Fernandes TS, Melo JA, Machado CGF (2008) p53 protein expression levels as bioindicator of individual exposure to ionizing radiation by flow cytometry. Moll Cell Biochem 308:127–131

    Article  Google Scholar 

  • Coleman CN, Blakely WF, Fike JR, Macvittie TJ, Metting NF, Mitchell JB, Moulder JE, Preston RJ, Seed TM, Stone HB, Tofilon PJ, Wong RSL (2003) Molecular and cellular biology of moderate-dose (1–10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland. Rad Res 159:812–834

    Article  Google Scholar 

  • Dainiak N, Waselenko JK, Armitage JO, Macvittie TJ, Farese AM (2003) The hematologist and radiation casualties. Hematol 473–496

  • Dainiak N, Schreyer SK, Albanese J (2005) The search for mRNA biomarkers: global quantification of transcriptional and translational responses to ionising radiation. Br Inst Rad 27:114–122

    Article  Google Scholar 

  • Darroudi F (2000) Use of FISH translocations analyses for retrospective biological dosimetry: how stable are stable chromosome aberrations? Rad Prot Dosim 88(1):101–109

    Google Scholar 

  • Doloy MT, Malarbet JL, Guedeney G, Bourguignon M, Leroy A, Reillaudou M, Masse R (1991) Use of unstable chromosome aberrations for biological dosimetry after the first post irradiation mitosis. Rad Res 125:141–151

    Article  Google Scholar 

  • Duan H, Leng S, Pan Z, Dai Y, Niu Y, Huang C, Bin P, Wang Y, Liu Q, Chen W, Zheng Y (2009) Biomarkers measured by cytokinesis-block micronucleus cytome assay for evaluating genetic damages induced by polycyclic aromatic hydrocarbons. Mutat Res 677:93–99

    Google Scholar 

  • Edwards AA, Lindholm C, Darroudi F, Stephan G, Romm H, Barquinero J, Barrios L (2005) Review of translocations detected by FISH for retrospective biological dosimetry applications. Rad Prot Dosim 113(4):396–402

    Article  Google Scholar 

  • Emamchai AM, Mozdarani H, Mohammadifrad S (2009) Construction of a dose–response curve by induction of premature chromosome condensation for biological dosimetry. Iran J Radiat Res 6(4):213–218

    Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Google Scholar 

  • Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 600:58–66

    Google Scholar 

  • Fenech M, Holland N, Chang WP, Zeiger E, Bonassi S (1999) The HUman MicroNucleus Project—An international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res 428:271–283

    Google Scholar 

  • Fernandes TS, Amaral A, Cavalcanti MB, Braga LRP, Melo RAM (2006) Unstable chromosome aberrations and micronuclei analyses in the biomonitoring of workers occupationally exposed to ionizing radiation. Int J Low Rad 3(4):299–309

    Article  Google Scholar 

  • Fernandes TS, Lloyd D, Amaral A (2008a) A comparison of different cytological stains for biological dosimetry. Int J Low Rad 84(8):703–711

    Google Scholar 

  • Fernandes TS, Lloyd D, Amaral A (2008b) Biodosimetry for dose assessment of partial-body exposure: a methodological improvement. Braz Arch Biol Technol 51:97–102

    Google Scholar 

  • Fringer J, Grinnell F (2003) Fibroblast quiescence in floating collagen matrices. J Biol Chem 278(23):20612–20617

    Article  Google Scholar 

  • Garcia-Sagredo JM (2008) Fifty years of cytogenetics: a parallel view of the evolution of cytogenetics and genotoxicology. Biochim Biophys Acta 363–375

  • Gotoh E, Durante M (2006) Chromosome condensation outside of mitosis: mechanisms and new tools. J Cell Physiol 209:297–304

    Article  Google Scholar 

  • Gumrich K, Virsik-Peuckert RP, Harder D (1985) Temperature and formation of radiation-induced chromosome aberrations. I. The effect of irradiation temperature. Int J Rad Biol 49(4):665–672

    Article  Google Scholar 

  • Ha M, Yoo K-Y, Cho S-H (2002) Glycophorin A mutant frequency in radiation workers at the nuclear power plants and a hospital. Mutat Res 501:45–56

    Google Scholar 

  • Hande MP, Azizova TV, Burak LE, Khokhryakov VF, Geard CR, Brenner DJ (2005) Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: an mFISH study. Genes Chromosomes Cancer 44:1–9

    Article  Google Scholar 

  • Hayata I, Kajima J, Okabe N (1992) Distinction of metaphases in the first cell cycle for automated system in radiation dosimetry. Int J Rad Appl Instrum 32(6):517–520

    Google Scholar 

  • Hoffmann W, Schmitz-Feuerhake I (1999) How radiation-specific is the dicentric assay? J Expo Anal Environ Epidemiol 2:113–133

    Article  Google Scholar 

  • Hone PA, Edwards AA, Lloyd DC, Moquet JE (2005) The yield of radio-induced chromosomal aberrations in first division human lymphocytes depends on the culture time. Int J Rad Biol 81(7):523–529

    Article  Google Scholar 

  • International Atomic Energy Agency (2001) Cytogenetic Analysis for Radiation Dose Assessment. Vienna. (IAEA Technical Report Series; 405)

  • International Atomic Energy Agency and World Health Organization (1998) Diagnosis and treatment of radiation injuries. Vienna: IAEA 1998:49 (Safety Reports Series: 2)

  • International Atomic Energy Agency and World Health Organization (2000) How to recognize and initially respond to an accidental radiation injury, Vienna: IAEA 2000

  • International Commission on Radiological Protection–ICRP (1991) Recommendations of the international commission on radiological protection, ICRP-60. Pergamon Press, Oxford

    Google Scholar 

  • International Standards Organization (2004) Radiation protection–Performance criteria for service laboratories performing biological dosimetry by cytogenetics. ISO 19238:2004 (E), ISO, Geneva, 21 pp

  • Jianlin L, Jiliang H, Lifen J, Wei Z, Baohong W, Hongping D (2004) Measuring the genetic damage in cancer patients during radiotherapy with three genetic endpoints. Mutagen 19(6):457–464

    Article  Google Scholar 

  • Joksic G, Petrovic S, Ilic Z (2004) Age-related changes in radiation-induced micronuclei among healthy adults. Braz J Med Biol 37:1111–1117

    Google Scholar 

  • Jones IM, Tucker JD, Langlois RG, Mendelsohn ML, Pleshanov P, Nelson DO (2001) Evaluation of three somatic genetic biomarkers as indicators of low dose radiation effects in clean-up workers of the Chernobyl nuclear reactor accident. Rad Prot Dosim 97(1):61–67

    Google Scholar 

  • Kanda R, Jiang T, Hayata I, Kobayashi S (1994) Effects of colcemid concentration on chromosome aberration analysis in human lymphocytes. J Rad Res 35:41–47

    Article  Google Scholar 

  • Kawata T, Ito H, George K, Wu H, Cucinotta FA (2004) Chromosome aberrations induced by high-LET radiations. Biol Sci Space 18(4):216–223

    Article  Google Scholar 

  • Kleinerman RA, Romanyukha AA, Schauer DA, Tucker JD (2006) Retrospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance and the glycophorin A mutation assay. Rad Res 166:287–302

    Article  Google Scholar 

  • Knher S, Bauchinger M (2000) Application of FISH painting for dose reconstruction: current status and views of the GSF cytogenetics group. Rad Prot Dosim 88(1):15–20

    Google Scholar 

  • Koenig KL, Goans RE, Hatchett RJ, Mettler FA Jr, Schumacher TA, Noji EK, Jarrett DG (2005) Medical treatment of radiological casualties: current concepts. Ann Emerg Med 45(6):643–652

    Article  Google Scholar 

  • Kumar PRV, Mohankumar MN, Hamza VZ, Jeevanram RK (2006) Dose-rate effect on the induction of HPRT mutants in human G0 lymphocytes exposed in vitro to gamma radiation. Rad Res 165:43–50

    Article  Google Scholar 

  • Lamb P, Crawford L (1986) Characterization of the human p53 gene. Mol Cell Biol 6(5):1379–1385

    Google Scholar 

  • Léonard A, Rueff J, Gerber GB, Léonard ED (2005) Usefulness and limits of biological dosimetry based on cytogenetic methods. Rad Prot Dosim 115(1–4):448–454

    Article  Google Scholar 

  • Lindberg HK, Falck GC-M, Järventaus H, Norppa H (2008) Characterization of chromosomes and chromosomal fragments in human lymphocyte micronuclei by telomeric and centromeric FISH. Mutagen 23(5):371–376

    Article  Google Scholar 

  • Lindholm C, Stricklin D, Jaworska A, Koivistoinen A, Paile W, Arvidsson E, Deperas-Standylo J, Wojcik A (2010) Premature chromosome condensation (PCC) assay for dose assessment in mass casualty accidents. Rad Res 173:71–78

    Article  Google Scholar 

  • Lloyd DC (1998) New developments in chromosomal analysis for biological dosimetry. Rad Prot Dosim 77(1–2):33–36

    Google Scholar 

  • Lloyd DC (2005) Cytogenetics studies of populations exposed to Chernobyl fallout. Int Congr Ser 1276:33–36

    Article  Google Scholar 

  • Lloyd DC, Edwards AA, Moquet JE, Guerrero-Carbajal YC (2000) The role of cytogenetics in early triage of radiation causalities. Appl Rad Isot 52:1107–1112

    Article  Google Scholar 

  • Lloyd DC, Edwards AA, Szluinska M (2006) The minimum detectable dose by biodosimetry in a radiation overexposure. In: Springer Netherlands (ed) Radiation risk estimates in normal and emergency situations. Chilton, UK, pp 253–258

    Chapter  Google Scholar 

  • Lucas JN, Deng W (2000) Views on issue in radiation biodosimetry based on chromosome translocations measured by FISH. Rad Prot Dosim 88(1):77–86

    Google Scholar 

  • Lu-Hesselmann J, van Beuningen D, Meineke V, Franke E (2006) Influences of TP53 expression on cellular radiation response and its relevance to diagnostic biodosimetry for mission environmental monitoring. Rad Prot Dosimetry 122(1–4):237–243

    Google Scholar 

  • McNamee JP, Flegal FN, Greene HB, Marro L, Wilkins RC (2009) Validation of the cytokinesis-block micronucleus (CBMN) assay for use as a triage biological dosimetry tool. Rad Prot Dosim 135(4):232–242

    Article  Google Scholar 

  • Mestres M, Caballín MR, Barrios L, Ribas M, Barquinero JF (2008) RBE of X rays of different energies: a cytogenetic evaluation by FISH. Rad Res 170:93–100

    Article  Google Scholar 

  • Moquet JE, Edwards AA, Lloyd DC, Hone P (2000) The use of FISH chromosome painting for assessment of old doses of ionizing radiation. Rad Prot Dosim 88(1):27–33

    Google Scholar 

  • Müller W-U, Rode A (2002) The micronucleus assay in human lymphocytes after high radiation doses (5–15 Gy). Mutat Res 502:47–51

    Google Scholar 

  • Müller W-U, Nüsse M, Miller BM, Slavotinek A, Viaggi S, Streffer C (1996) Micronuclei: a biological indicator of radiation damage. Mutat Res 366:163–169

    Google Scholar 

  • Müller I, Geinitz H, Braselmann H, Baumgartner A, Fasan A, Thamm R, Molls M, Meineke V, Zitzelsberger H (2005) Time-course of radiation-induced chromosomal aberrations in tumor patients after Radiotherapy. Int J Rad Oncol Biol Phys 63(4):1214–1220

    Google Scholar 

  • Norppa H, Falck GC (2003) What do human micronuclei contain? Mutagen 18:221–233

    Article  Google Scholar 

  • Novellino ATN, Amorim RFB, Queiroz LMG, Freitas RA (2003) Análise da imunoexpressão do PCNA e p53 em carcinoma de células escamosas oral. Correlação com a gradação histológica de malignidade e características clínicas. Acta Cir Bras 18(5):458–464

    Article  Google Scholar 

  • Obe G, Pfeiffer P, Savage JRK, Johannes C, Goedecke W, Jeppesen P, Natarajan AT, Martínez-López W, Folle GA, Drets ME (2002) Chromosomal aberrations: formation, identification and distribution. Mutat Res 504:17–36

    Google Scholar 

  • Okorokov AL, Orlova EV (2009) Structural biology of the p53 tumor suppressor. Curr Opin Struc Biol 19:197–202

    Article  Google Scholar 

  • Pala FS, Moquet JE, Edwards AA, Lloyd DC (2001) In vitro transmission of chromosomal aberrations through mitosis in human lymphocytes. Mutat Res 474:139–146

    Google Scholar 

  • Paul SFD, Venkatachalam P, Jeevanram RK (1997) A comparative study of synchronized and conventional culture methods on the micronucleus dose-response curve. Mutat Res 391:91–98

    Google Scholar 

  • Prasanna PGS, Kolanko CJ, Rippeon TL, Loats H, Reeves GI, Blakely WF (1997) Use of the premature chromosome condensation assay for biodosimetry applications. In: Court LA, Lallemand J (eds) L’Homme Blesse, The Proceedings. Radiological Accident: The Injured Victim. Logistic, Diagnostic, and Therapeutic Approaches in Case of Accidental Irradiation and Contamination. Le Centre de Recherche du Service de Sante des Armees, l’Institut de Protection et de Surete Nucleaire, l’Electricitie de France, pp 157–169

  • Prasanna PGS, Martin PR, Subramanian U, Berdycheviski R, Krasnopolsky K, Duffy KL, Manglapus GL, Landauer MR, Srinivasan V, Boreham D, Hagan MP, Jinaratana V, Blakely WF (2005) Cytogenetic Biodosimetry for radiation disasters: recent advances. Published in the proceedings of the NATO Human Factors and Medicine (HFM) Panel Research Task Group (RTG) 099 Meeting, “Radiation Bioeffects and Countermeasures”. Bethesda, USA

    Google Scholar 

  • Prise KM, Pinto M, Newman HC, Michael BD (2001) A review of studies of ionizing radiation-induced double-strand break clustering. Rad Res 156:572–576

    Article  Google Scholar 

  • Purrot RJ, Vulpis N, Lloyd DC (1981) Chromosome dosimetry: the influence of culture media on the proliferation of irradiated and unirradiated human lymphocytes. Rad Prot Dosim 1(3):203–208

    Google Scholar 

  • Ramírez MJ, Surralés J, Puerto S, Creus A, Marcos A (1999) Low persistence of radiation-induced centromere positive and negative micronuclei in cultured human cells. Mutat Res 440:163–169

    Google Scholar 

  • Ravi M, Preetha B, Govind PM, Deepa PV, Sulogna G, Paul SFD (2007) Optimizing premature chromosome condensation (PCC) of human lymphocytes by somatic cell hybridization to study primary DNA damages. Int J Hum Genet 7(4):319–323

    Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat 9:402–412

    Article  Google Scholar 

  • Rodrigues AS, Oliveira NG, Gil OM, Léonard A, Rueff J (2005) Use of cytogenetic indicators in radiobiology. Rad Prot Dosim 115(1–4):455–460

    Article  Google Scholar 

  • Rodríguez P, Montoro A, Barquinero JF, Caballín MR, Villaescusa I, Barrios L (2004) Analysis of translocations in stable cells and their implications in retrospective biological dosimetry. Rad Res 162:31–38

    Article  Google Scholar 

  • Rössner P Jr, Chvatalova I, Schmuczerova J, Milcova A, Rössner P, Sram RJ (2004) Comparison of p53 levels in lymphocytes and in blood plasma of nuclear power plant workers. Mutat Res 556:55–63

    Google Scholar 

  • Rothkamm K, Gunasekara K, Warda SA, Krempler A, Löbrich M (2008) Radiation-induced HPRT mutations resulting from misrejoined DNA double-strand breaks. Rad Res 169:639–648

    Article  Google Scholar 

  • Roy L, Sorokine-Durm I, Voisin P (1996) Comparison between fluorescence in situ cytogenetics for dicentric scoring: a first-step validation for the use of FISH in biological dosimetry. Int J Rad Biol 70(6):665–669

    Article  Google Scholar 

  • Roy L, Buard V, Delbos M, Durand V, Paillole N, Grégoire E, Voisin P (2004) International intercomparison for criticality dosimetry: the case of biological dosimetry. Rad Prot Dosim 110(1–4):471–476

    Article  Google Scholar 

  • Saenko AS, Zamulaeva IA, Smirnova SG, Orlova NV, Selivanova EI, Matveeva NP, Kaplan MA, Nugis VY, Nadezhina NM, Tsyb A (2000) Determination of somatic mutant frequencies at glycophorin A and T-cell receptor loci for biodosimetry of acute and prolonged irradiation. Appl Rad Isot 52:1145–1148

    Article  Google Scholar 

  • Savage JRK, Simpson PJ (1994) On the scoring of FISH-”painted” chromosome exchange aberrations. Mutat Res 307:345–353

    Google Scholar 

  • Savage JRK, Tucker JD (1996) Nomenclature systems for FISH-painted chromosome aberrations. Mutat Res 366:153–161

    Google Scholar 

  • Silva-Barbosa I, Pereira-Magnata S, Amaral A, Sotero G, Melo HC (2005) Dose assessment by quantification of chromosome aberrations and micronuclei in peripheral blood lymphocytes from patients exposed to gamma radiation. Genet Mol Biol 28(3):452–457

    Article  Google Scholar 

  • Sorokine-Durm I, Durand V, Delbos M, Le Baron L, Roy L, Voisin P (2000) A French view on FISH painting as a biodosimeter. Rad Prot Dosim 88(1):35–44

    Google Scholar 

  • Stankeová S, Crompton NE, Blattmann H, Theiler P, Emery GC, Roos M, Kaser-Hotz B (2003) Apoptotic response of irradiated T-lymphocytes. Strahlenther Onkol 11:779–786

    Article  Google Scholar 

  • Stepanova E, Karmaus W, Naboka M, Vdovenko V, Mousseau T, Shestopalov VM, Vena J, Svendsen E, Underhill D, Pastides H (2008) Exposure from the Chernobyl accident had adverse effects on erythrocytes, leukocytes, and, platelets in children in the Narodichesky region, Ukraine: A 6-year follow-up study. Environ Health 7(21):1–13

    Google Scholar 

  • Streffer C (2007) The ICRP 2007 recommendations. Rad Prot Dosim 127(1–4):2–7

    Article  Google Scholar 

  • Stricklin D, Jaworska A, Arvidsson E (2007) Method for efficient establishment of technical Biodosimetry competence. Rad Meas 42:1114–1118

    Article  Google Scholar 

  • Suzuki K, Ojima M, Kodama S, Watanabe M (2006) Delayed activation of DNA damage checkpoint and radiation-induced genomic instability. Mutat Res 597:73–77

    Google Scholar 

  • Tawn EJ, Whitehouse CA (2005) Chromosome intra- and inter-changes determined by G-banding in radiation workers with in vitro exposure to plutonium. J Rad Prot 25:83–88

    Article  Google Scholar 

  • Thierens H, Vral A, Morthier R, Aousalah B, De Ridder L (2000) Cytogenetic monitoring of hospital workers occupationally exposed to ionizing radiation using the micronucleus centromere assay. Mutagen 15(3):245–249

    Article  Google Scholar 

  • Thomas P, Umegaki K, Fenech M (2003) Nucleoplasmic bridges are a sensitive measure of chromosome rearrangement in the cytokinesis-block micronucleus assay. Mutagen 18(2):187–194

    Article  Google Scholar 

  • Tucker JD (1998) Use of chromosome translocations for measuring prior environmental exposures in humans. Biomark: Med Workplace Appl 117–132

  • Tucker JD (2001) FISH cytogenetics and the future of radiation Biodosimetry. Rad Prot Dosim 97(1):55–60

    Google Scholar 

  • Tucker JD (2008) Low-dose ionizing radiation and chromosome translocations: a review of the major considerations for human biological dosimetry. Mutat Res 659:211–220

    Article  Google Scholar 

  • Tucker JD, Morgan WF, Awa AA, Bauchinger M, Blakey D, Cornforth MN, Littlefield LG, Natarajan AT, Shasserre C (1995a) A proposed system for scoring structural aberrations detected by chromosome painting. Cytogenet Cell Genet 68:211–221

    Article  Google Scholar 

  • Tucker JD, Morgan WF, Awa AA, Bauchinger M, Blakey D, Cornforth MN, Littlefield LG, Natarajan AT, Shasserre C (1995b) PAINT: a proposed nomenclature for structural aberrations detected by whole chromosome painting. Mutat Res 347:21–24

    Article  Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000) Sources, effects and risks of ionizing radiation: UNSCEAR 2000 report to the general assembly, with scientific annexes, vol 1. United Nations, New York, pp 499–654

    Google Scholar 

  • Virsik-Peuckert RP, Harder D (1985) Temperature and formation of radiation-induced chromosome aberrations. II. The temperature dependence of lesion repair and lesion interaction. Int J Rad Biol 49(4):673–681

    Article  Google Scholar 

  • Voisin P, Barquinero F, Blakely B, Lindholm C, Lloyd D, Luccioni C, Miller S, Palitti E, Prasana PGS, Stephan G, Thierens H, Turai I, Waselenko JK, Macvlttie TJ, Blakely WF, Peslk N, Wiley AL, Dickerson WE, Tsu H, Confer DL, Coleman CN, Seed T, Lowry P, Armitage JO, Dainiak N (2002) Medical management of the acute radiation syndrome: recommendations of the strategic national stockpile radiation working group. Ann Intern Med 140:1037–1051

    Google Scholar 

  • Voisin P, Roy L, Hone PA, Edwards AA, Lloyd D, Stephan G, Romm H, Groer PG, Brame R (2004a) Criticality accidental dosimetry by chromosomal analysis. Rad Prot Dosim 110(1–4):443–447

    Article  Google Scholar 

  • Voisin P, Roy L, Benderitter M (2004b) Why can’t we find a better biological indicator of dose? Rad Prot Dosim 112(4):465–469

    Article  Google Scholar 

  • Wanga ZZ, Li WJ, Zhi DJ, Gao QX, Qu Y, Wang BQ (2009) Prematurely condensed chromosome fragments in human lymphocytes induced by high doses of high-linear-energy-transfer irradiation. Mutat Res 679:9–12

    Google Scholar 

  • Waselenko JK, Macvittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, Tsu H, Confer DL, Coleman CN, Seed T, Lowry P, Armitage JO, Dainiak N (2004) Medical management of the Acute Radiation Syndrome: Recommendations of the strategic national Stockpile radiation working group. Ann Intern Med 140(12):1037–1051

    Google Scholar 

  • Wilkins RC, Romm H, Kao CT, Awa AA, Yoshida MA, Livingston GK, Jenkins MS, Oestreicher U, Pellmar TC, Prasanna PGS (2008) Interlaboratory comparison of the dicentric chromosome assay for radiation biodosimetry in mass casualty events. Rad Res 169:551–560

    Article  Google Scholar 

  • Wojcik A, Kowalska M, Bouzyk E, Buraczewska I, Kobialko G, Jarocewicz N, Szumiel I (2000) Validation of the micronucleus-centromere assay for biological dosimetry. Genet Mol Biol 23(4):1083–1085

    Article  Google Scholar 

  • Wojcik A, Llyod D, Romm H, Roy L (2009) Biological dosimetry for triage of casualties in a large-scale radiological emergency: capacity of the EU member states. Rad Prot Dosim 1–5

  • Yoshida MA, Hayata I, Tateno H, Tanaka K, Sonta S, Kodama S, Kodama Y, Sasaki MS (2007) The Chromosome network for biodosimetry in Japan. Rad Meas 42:1125–1127

    Article  Google Scholar 

  • Yusuf I, Fruman DA (2003) Regulation of quiescence in lymphocytes. Trends Immunol 24(7):380–386

    Article  Google Scholar 

  • Zeljezic D, Garaj-Vrhovac V (2006) Fluorescence in situ hybridization in detecting chromosome aberrations caused by occupational exposure to ionizing radiation. Arh Hig Rada Toksikol 57:65–68

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Thiago de Salazar e Fernandes (UFRPE–Recife-Brazil) for the discussion of this text, Mariana Cavalcanti (LAMBDA-UFPE-Brazil) for the image of p53 expression level by flow cytometry and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Maria Pereira de Lemos Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lemos Pinto, M.M.P., Santos, N.F.G. & Amaral, A. Current status of biodosimetry based on standard cytogenetic methods. Radiat Environ Biophys 49, 567–581 (2010). https://doi.org/10.1007/s00411-010-0311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-010-0311-3

Keywords

Navigation