Skip to main content

Advertisement

Log in

Temperature-controlled exposure systems for investigating possible changes of retinal ganglion cell activity in response to high-frequency electromagnetic fields

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Two exposure systems were developed for the measurement of retinal ganglion cell responses to light under the influence of pulsed high-frequency electromagnetic fields. Exposure characteristics were determined numerically for the GSM standards (900/1,800 MHz) and the UMTS standard (1,966 MHz) with specific absorption rates, averaged over the region of interest, of 0.02, 0.2, 2 und 20 W kg−1. Extracellular multi- and single unit recordings of light responses from several retinal ganglion cells per retina could be obtained in these exposure systems on a regular basis, using two recording electrodes simultaneously. With appropriate temperature control adjustment, maximal temperature deviations at exposure onset and offset were well below the range of ±0.1°C for all SAR values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Foster KR, Glaser R (2007) Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys 92:609–620

    Article  Google Scholar 

  2. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R (2002) Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer and blood–brain barrier- related effects. Differentiation 70:120–129

    Article  Google Scholar 

  3. Peinnequin A, Piriou A, Mathieu J, Dabouis V, Sebbah C, Malabiau R, Debouzy JC (2000) Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line. Bioelectrochem Bioenerg 51:157–161

    Google Scholar 

  4. Krause MC, Pesonen M, Björnberg CH, Hämäläinen H (2007) Effects of pulsed and continuous wave 902 MHz mobile phone exposure on brain oscillatory activity during cognitive processing. Bioelectromagnetics 28:296–308

    Article  Google Scholar 

  5. Nittby H, Grafström G, Tian DP, Malmgren L, Brun A, Persson PRR, Salford LG, Eberhardt J (2008) Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29:219–232

    Article  Google Scholar 

  6. Tattersall JEH, Scott IR, Wood SJ, Nettell JJ, Bevir MK, Wang Z, Somasiri NP, Chen X (2001) Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res 904:43–53

    Article  Google Scholar 

  7. Attwell D (2003) Interaction of low frequency electric fields with the nervous system: The retina as a model system. Radiation Protection Dosimetry 106:341–348

    Google Scholar 

  8. Dowling J (1987) The retina: an approachable part of the brain. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  9. Rodieck RW (1998) The first steps in seeing. Sinauer Associates, Sunderland

    Google Scholar 

  10. Greschner M, Thiel A, Kretzberg J, Ammermüller J (2006) Complex spike-event pattern of transient ON–OFF retinal ganglion cells. J Neurophysiol 96:2845–2856

    Article  Google Scholar 

  11. Schuderer J, Samaras T, Oesch W, Spät D, Kuster N (2004) High peak SAR exposure unit with tight exposure and environmental control for in vitro experiments at 1,800 MHz. IEEE Trans Microw Theory Tech 52:2057–2066

    Article  Google Scholar 

  12. Schuderer J, Samaras T, Oesch W, Spät D, Kuster N (2004) In vitro exposure system for RF exposure at 900 MHz. IEEE Trans Microw Theory Tech 52:2067–2075

    Article  Google Scholar 

  13. Streckert J (1998) Anwendung feldtheoretischer Verfahren auf Untersuchungen zur Wirkung hochfrequenter elektromagnetischer Felder auf Mensch und Umwelt. Dissertation, Bergische Universität Wuppertal

  14. Bitz A (2003) Numerische Feldberechnung im biologischen Gewebe: Exposition von Personen, Tieren und isolierten biologischen Systemen in elektromagnetischen Feldern. Dissertation, Bergische Universität Wuppertal

  15. Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. Trans ASME 64:759–768

    Google Scholar 

  16. Liptak B (1995) Instrument Engineers’ Handbook: Process Control. Radnor (Penn) Chilton Book Company, Pennsylvania

  17. Völgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192

    Article  Google Scholar 

  18. Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr (1999) UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J Neurosci 19:442–455

    Google Scholar 

  19. Mbonjo HNM, Streckert J, Bitz A, Hansen V, Glasmachers A, Gencol S, Rozic D (2004) Generic UMTS test signal for RF bioelectromagnetic studies. Bioelectromagnetics 25:415–425

    Article  Google Scholar 

  20. EMPIRE™ user and reference manual. IMST GmbH, 2004

  21. Kunz KS, Luebbers RJ (1993) The finite difference time domain method for electromagnetics. CRC Press, Boca Raton

    Google Scholar 

  22. Taflove A (1995) Computational electrodynamics: the finite difference time domain method. Artech House, Boston

    MATH  Google Scholar 

  23. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propagat AP 14:302–307

    Article  MATH  ADS  Google Scholar 

  24. Berenger J-P (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  Google Scholar 

  26. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9:R53–R78

    Article  MATH  Google Scholar 

  27. Heldmaier G, Neuweiler G (2004) Vergleichende Tierphysiologie, Band 2. Springer, Berlin

    Google Scholar 

  28. Geiser MH, Bonvin M, Quibel O (2004) Corneal and retinal temperatures under various ambient conditions: a model and experimental approach. Klin Monatsbl Augenheilkd 221:311–314

    Article  Google Scholar 

  29. Schellart NA, Spekreijse H, van den Berg TJ (1974) Influence of temperature on retinal ganglion cell response and ERG of goldfish. J Physiol 238:251–267

    Google Scholar 

  30. Dhingra NK, Kao YH, Sterling P, Smith RG (2003) Contrast threshold of a brisk-transient ganglion cell in vitro. J Neurophysiol 89:2360–2369

    Article  Google Scholar 

  31. Aho AC, Donner K, Reuter T (1993) Retinal origins of the temperature effect on absolute visual sensitivity in frogs. J Physiol 463:501–521

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Office for Radiation Protection, Germany (StSch 4429) and the Deutsche Forschungsgemeinschaft (FOR 701). We thank Jennifer Trümpler for critically reading the manuscript. M. T. A. would like to thank E. D. Ahlers for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Ammermüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahlers, M.T., Bolz, T., Bahr, A. et al. Temperature-controlled exposure systems for investigating possible changes of retinal ganglion cell activity in response to high-frequency electromagnetic fields. Radiat Environ Biophys 48, 227–235 (2009). https://doi.org/10.1007/s00411-008-0207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-008-0207-7

Keywords

Navigation