Skip to main content
Log in

Effects induced by keV low-energy ion irradiation in the nematode Caenorhabditis elegans

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The nematode Caenorhabditis elegans is an excellent model organism with which to study the biological effects and mechanisms of ionizing irradiation. In this study, using C. elegans as a model, the effects of keV low-energy argon ion irradiation were investigated, by examining cuticle damage, worm survival, brood size, life span, and germ cell death. The surface etching of worm cuticle after ion impact was investigated by trypan blue staining and SEM microscopy. The degree of damage increased with ion fluence (2 × 1014 to 7 × 1014 ions cm−2) and energy (5–25 keV). The survival rates, as compared to vacuum control, of ion-bombarded worm larvae at different developmental stages (L1–L4) decreased with increasing ion fluence. L1 larvae were found to be more sensitive to ion bombardment than larvae at other stages. The mean brood size in ion-bombarded groups decreased with increasing ion fluence and energy. Furthermore, keV argon ions caused a significant increase in the number of apoptotic germ cells. However, average lifespan was not significantly affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gunthera W, Heinrich W, Flesch F, Reitz G (2001) Energy spectra of HZE-particles inside the International Space Station. Radiat Meas 34:245–247

    Article  Google Scholar 

  2. Feng HY, Yu ZL, Chu PK (2007) Ion implantation of organisms. doi: 10.1016/j.mser. 2006. 11.001

  3. Kraft G (2000) Tumor therapy with heavy charged particles. Prog Part Nucl Phys 45:S473–S544

    Article  ADS  Google Scholar 

  4. Dennis JA (1972) Interaction of low-energy protons with ribonuclease. Phys Med Biol 17:304–306

    Article  Google Scholar 

  5. Yu ZL (2000) Ion beam application in genetic modification. IEEE trans Plasma Sci 28:128–135

    Article  ADS  Google Scholar 

  6. Deng ZW, Bald I, Illenberger E, Huels MA (2005) Beyond the Bragg peak: hyperthermal heavy ion damage to DNA components. Phys Rev Lett 95:153201–153204

    Article  ADS  Google Scholar 

  7. Wang Q, Zhang G, Du YH, Zhao Y, Qiu GY (2003) Low-energy 30 keV carbon ion induced mutation spectrum in the LacZ Gene of M13mp18 Double-Stranded DNA. Mutat Res 528:55–60

    Google Scholar 

  8. Feng HY, Wu LJ, Yu LX, Han W, Liu XL, Yu ZL (2005) Mutagenic effect of a keV range N+ beam on Mammalian cells. Nucl Instrum Methods Phys Res B 234:477–486

    Article  ADS  Google Scholar 

  9. Wood WB (1988) The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

    Google Scholar 

  10. Ankeny RA (2001) The natural history of Caenorhabditis elegans research. Nat Rev Genet 2:474–479

    Article  Google Scholar 

  11. Strayer A, Wu ZX, Christen Y, Link CD, Luo Y (2003) Expression of small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo Biloba Extract EGb 761. FASEB J 17:2305–2307. doi:10.1096/fj.03-0376fje

    Google Scholar 

  12. Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90:8905–8909

    Article  ADS  Google Scholar 

  13. Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO (2000) A conserved checkpoint pathway mediates DNA damage induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5:435–443

    Article  Google Scholar 

  14. Feng HY, Wu LJ, Xu An, Hu BR, Hei TK, Yu ZL (2004) Survival of mammalian cells under high vacuum condition for ion bombardment. Cryobiology 49:241–249

    Article  Google Scholar 

  15. Yu ZL (2005) Introduction to ion beam biotechnology. Springer, New York

    Google Scholar 

  16. Lewis JA, Fleming JT (1995) Basic culture methods. Methods Cell Biol 48:3–29

    Article  Google Scholar 

  17. Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol 53:240–244

    Google Scholar 

  18. Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150:129–155

    Google Scholar 

  19. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126:1011–1022

    Google Scholar 

  20. Yeaman C, Grindstaff KK, Nelson WJ (1999) New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 79:73–98

    Google Scholar 

  21. Solomon A, Bandhakavi S, Jabbar S, Shah R, Beitel GJ, Morimoto RI (2004) Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics 167:161–170

    Article  Google Scholar 

  22. Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14(10):410–416

    Article  Google Scholar 

  23. Yu ZL, Deng JG, He JJ, Huo YP, Wu YJ, Wang XD, Lui GF (1991) Mutation breeding by ion implantation. Nucl Instrum Methods B59/60(1):705–708

    ADS  Google Scholar 

  24. Wu LF, Yu ZL (2001) Radiobiological effects of low-energy ion beam on wheat. Radiat Environ Biophys 40:53–57

    Article  Google Scholar 

  25. Feng HY, Liu XL, Yuan H, Kong MG, Wu LJ, Wu YJ, Yu ZL (2005) Utilizing low-energy ion beams to study living organisms. 14th International Conference on surface modification of materials by ion beams. 04–09 September, Kusadasi, Turkey

  26. Ishii N, Suzuki K (1990) X-ray inactivation of Caenorhabditis elegans embryos or larvae. Int J Radiat Biol 58(5):827–833

    Article  Google Scholar 

  27. Stergiou L, Hengartner MO (2004) Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 11:21–28

    Article  Google Scholar 

  28. Nelson GA, Schubert WW, Marshall TM (1992) Radiobiological studies with the nematode Caenorhabditis elegans: Genetic and developmental effects of high LET radiation. Int J Rad Appl Instrum D 20(1):227–232

    Google Scholar 

  29. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126:1011–1022

    Google Scholar 

  30. Van Dongen JT, Ammerlaan AMH, Wouterlood M, Van Aelst AC, Borstlap AC (2003) Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients. Ann Bot 91(6):729–737

    Article  Google Scholar 

  31. Sonntag CV (1987) The chemical basis for radiation biology. Taylor and Francis, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengliang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Cai, K., Feng, H. et al. Effects induced by keV low-energy ion irradiation in the nematode Caenorhabditis elegans . Radiat Environ Biophys 46, 255–261 (2007). https://doi.org/10.1007/s00411-007-0103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-007-0103-6

Keywords

Navigation