Skip to main content

Advertisement

Log in

Soil-to-grain transfer of fallout 90Sr for 28 winter wheat cultivars

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

In order to identify wheat cultivars with minimum soil-to-grain transfer of fallout 90Sr, 28 winter wheat cultivars were investigated at three different sites with different soil types in Upper Bavaria. Each cultivar was grown on an area of 10 m2 and harvested in August 1999. Mean soil-to-grain concentration ratios (C r) were 0.151 ± 0.029, 0.205 ± 0.035 and 0.060 ± 0.012, respectively. The C r values obtained varied by factors of up to 2.6 for the different cultivars at a given site, and by factors of up to 5.0 for the different sites and a given cultivar. Site-averaged normalized concentration ratios (SANCr) ranged from 0.666 ± 0.062 to 1.503 ± 0.161. The cultivars Convent, Ludwig, and Semper, showed the lowest uptake of 90Sr compared to the mean of all cultivars at each site. A cultivar that shows both minimum uptake of 90Sr and 137Cs could not be identified. The results suggest that 90Sr rather than 137Cs might be the limiting radionuclide concerning the use of contaminated land for wheat production. Thus, more efforts might be necessary identifying wheat cultivars with minimum 90Sr uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. UNSCEAR (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly

  2. Weßelmann C (2006) Nuclear power plants: 2005 atw compact statistics. ATW 51:45–49

    Google Scholar 

  3. Freemantle M (2004) Nuclear power for the future. Chem Eng News 82:31–35

    Google Scholar 

  4. Gagarinskii AY, Ignat’ev VV, Ponomarev-Stepnoi NN, Subbotin SA, Tsibul’skii VF (2005) Role of nuclear power in world energy production in the 21st century. At Energy 99:759–769

    Article  Google Scholar 

  5. Guinnessy P (2006) Stronger future for nuclear power. Phys Today 59:19–20

    Article  Google Scholar 

  6. Howard BJ, Beresford NA, Nisbet A, Cox G, Oughton DH, Hunt J, Alvarez B, Andersson KG, Liland A, Voigt G (2005) The STRATEGY project: decision tools to aid sustainable restoration and long-term management of contaminated agricultural ecosystems. J Environ Radioact 83:275–295

    Article  Google Scholar 

  7. Prister B, Loshchilov N, Perepeliantnikova L, Perepelyatnikov G, Bondar P (1992) Efficiency of measures aimed at decreasing the contamination of agricultural products in areas contaminated by the Chernobyl NPP accident. Sci Total Environ 112:79–87

    Article  Google Scholar 

  8. Fuller WH, Flocker WJ (1955) The uptake of radiostrontium by certain type crops from clcareous soils. Arizona Agr Expt Sta Tech Bull 130:1–32

    Google Scholar 

  9. Schimmack W, Zimmermann G, Sommer M, Dietl F, Schultz W, Paretzke H G (2004) Soil-to-grain transfer of fallout 137Cs for 28 winter wheat cultivars as observed in field experiments. Radiat Environ Biophys 42:275–284

    Article  Google Scholar 

  10. Mück K (2003) Sustainability of radiologically contaminated territories. J Environ Radioact 65:109–130

    Article  Google Scholar 

  11. Schachtschabel P, Blume HP, Hartge KH, Schwertmann U (1982) Lehrbuch der bodenkunde. Ferdinand enke Verlag, Stuttgart

  12. BMU (2000) Messanleitungen für die Überwachung der Radioaktivität in der Umwelt und zur Erfassung radioaktiver Emissionen aus kerntechnischen Anlagen, Urban & Fischer, Munich

  13. Gerstmann U, Tschöpp V (2006) Determination of 90Sr/90Y in wheat grains, soil, and deposition samples by TBP extraction and Cerenkov counting. Radiocarbon 48:197–204

    Google Scholar 

  14. Nisbet AF, Woodman RFM, Haylock RGE (1999) Recommended soil-to-plant transfer factors for radiocesium and radiostrontium for use in agricultural systems, NRPB-R304,

  15. Nisbet AF, Woodman RFM (2000) Soil-to-plant transfer factors for radiocesium and radiostrontium in agricultural systems. Health Phys 78:279–288

    Article  Google Scholar 

  16. Cierjacks A, Albers B (2004) Compilation and evaluation of radioecological measured data on the soil-to-plant transfer with respect to the local variability in Germany, BMU-2004–642

  17. Coughtrey PJ, Thorne MC (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems, A. A. Balkema, Rotterdam

  18. Lee CC, Sosulski FW (1965) Uptake of Sr85 by cereal crops and varieties. Can J Plant Sci 45:13–17

    Article  Google Scholar 

  19. Malikov VG, Perepeliatnikova LV, Djukov BI (1981) Species and variety differences of plants in 137Cs and 90Sr accumulation from soil. Agrochemistry 8:94–98 (in Russian)

    Google Scholar 

  20. Green N, Wilkins BT, Hammond DJ, Davidson MF (1996) Transfer of radionuclides to crops in an area of land reclaimed from the sea. J Environ Radioact 31:171–187

    Article  Google Scholar 

  21. Putyatin Y, Seraya TM, Petrykevich OM, Howard BJ (2006) Comparison of the accumulation of 137Cs and 90Sr by six spring wheat varieties. Radiat Environ Biophys 44:289–298

    Article  Google Scholar 

  22. RDU-99 (1999) Republican permitted levels of radioactive contamination of foodstuffs and water. Belarussian sanitary standard 10-117-99

  23. Ivanov YA, Lewyckyj N, Levchuk SE, Prister BS, Firsakova SK, Arkhipov NP, Arkhipov AN, Kruglov SW, Alexakhin RM, Sandalls J, Askbrant S (1997) Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils. J Environ Radioact 35:1–21

    Article  Google Scholar 

  24. Askbrant S, Melin J, Sandalls J, Rauret G, Vallejo R, Hinton T, Cremers A, Vandecastelle C, Lewyckyj N, Ivanov YA, Firsakova SK, Arkhipov NP, Alexakhin RM (1996) Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia 6 years after the Chernobyl fallout. J Environ Radioact 31:287–312

    Article  Google Scholar 

  25. Kagan LM, Kadatsky VB (1996) Depth migration of Chernobyl originated 137Cs and 90Sr in soils of Belarus. J Environ Radioact 33:27–39

    Article  Google Scholar 

  26. Krouglov SV, Filipas AS, Alexakhin RM, Arkhipov NP (1997) Long-term study on the transfer of 137Cs and 90Sr from Chernobyl-contaminated soils to grain and crops. J Environ Radioact 34:267–286

    Article  Google Scholar 

  27. Sokolik GA, Ivanova TG, Leinova SL, Ovsiannikova SV, Kimlenko IM (2001) Migration ability of radionuclides in soil-vegetation cover of Belarus after Chernobyl accident. Environ Int 26:183–187

    Article  Google Scholar 

  28. Mück K, Pröhl G, Likhtarev I, Kovgan L, Meckenbach R, Golikov V (2002) A consistent radionuclide vector after the Chernobyl accident. Health Phys 82:141–156

    Article  Google Scholar 

  29. Camps M, Rigol A, Vidal M, Rauret G (2003) Assessment of the suitability of soil amendments to reduce 137Cs and 90Sr root uptake in meadows. Environ Sci Technol 37:2820–2828

    Article  Google Scholar 

  30. Agapkina GI, Tikhomirov FA, Shcheglov AI, Kracke W, Bunzl K (1995) Association of Chernobyl-derived 239+−240Pu, 241Am, 90Sr and 137Cs with organic matter in the soil solution. J Environ Radioact 29:257–269

    Article  Google Scholar 

  31. Besnus F, Peres JM, Gouillou P, Kashparov V, Gordeev S, Mironov V, Knatko V, Bondar J, Kudrjashov V, Sokolik G, Leynova S, Aragon A, Espinosa A, (1996) Contamination characteristics of podzols from district of Ukraine, Belarus and Russia strongly affected by the Chernobyl accident. EUR 16912

  32. Kashparov VA, Lundin SM, Khomutinin YV, Kaminski SP, Levchuk SE, Protsak VP, Kadygrib AM, Zvarich SI, Yoschenko VI, Tschiersch J (2001) Soil contamination with 90Sr in the near zone of the Chernobyl accident. J Environ Radioact 56:285–298

    Article  Google Scholar 

  33. Kashparov VA, Lundin SM, Zvarych SI, Yoshchenko VI, Levchuk SE, Khomutinin YV, Maloshtan IM, Protsak VP (2003) Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ 317:105–119

    Article  Google Scholar 

  34. Kashparov VA, Lundin SM, Khomutinin YV, Kaminski SP, Levchuk SE, Protsak VP, Kadygrob AM, Zvarich SI, Kovtun MV, Zhurba MA, Lanshin VP (2000) 90Sr contamination in the vicinity of the Chernobyl NPP. Radiochem 42:609–619

    Google Scholar 

  35. Rasmusson DC, Smith LH, Myers WA (1963) Effect of genotype on accumulation of strontium-89 in barley and wheat. Crop Sci 3:34–37

    Article  Google Scholar 

  36. Palchuk LM, Varba VE, Sorgin GS (1986) Content of Sr and Cs in soil Kirovograd region and content of radionuclides in agricultural corps (in Russian). Agrochimia 10:100–102

    Google Scholar 

Download references

Acknowledgments

Mrs. Vlasta Tschöpp is warmly acknowledged for performing the 90Sr analysis. We also thank Drs. Katharina Schneider and Jochen Tschiersch for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. C. Gerstmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstmann, U.C., Schimmack, W. Soil-to-grain transfer of fallout 90Sr for 28 winter wheat cultivars. Radiat Environ Biophys 45, 187–194 (2006). https://doi.org/10.1007/s00411-006-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-006-0060-5

Keywords

Navigation