Skip to main content
Log in

Does reduced gravity alter cellular response to ionizing radiation?

  • Review
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

This review addresses the purported interplay between actual or simulated weightlessness and cellular response to ionizing radiation. Although weightlessness is known to alter several cellular functions and to affect signaling pathways implicated in cell proliferation, differentiation and death, its influence on cellular radiosensitivity has so far proven elusive. Renewed controversy as to whether reduced gravity enhances long-term radiation risk is fueled by recently published data that claim either overall enhancement of genomic damage or no increase of radiation-induced clastogenicity by modeled microgravity in irradiated human cells. In elucidating this crucial aspect of space radiation protection, ground-based experiments, such as those based on rotating-wall bioreactors, will increasingly be used and represent a more reproducible alternative to in-flight experiments. These low-shear vessels also make three-dimensional cellular co-cultures possible and thus allow to study the gravisensitivity of radioresponse in a context that better mimics cell-to-cell communication and hence in vivo cellular behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LET:

Linear energy transfer

HZE:

High atomic number Z and energy E.

References

  1. Shavers MR, Zapp N, Barber RE, Wilson JW, Qualls G, Toupes L, Ramsey S, Vinci V, Smith G, Cucinotta FA (2004) Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv Space Res 34:1333–1337

    Article  ADS  Google Scholar 

  2. Todd P (2004) Overview of the spaceflight radiation environment and its impact on cell biology experiments. J Gravit Physiol 11:11–16

    Google Scholar 

  3. Wilson JW, Clowdsley MS, Cucinotta FA, Tripathi RK, Nealy JE, De Angelis G (2004) Deep space environments for human exploration. Adv Space Res 34:1281–1287

    Article  ADS  Google Scholar 

  4. Koike Y, Frey MA, Sahiar F, Dodge R, Mohler S (2005) Effects of HZE particles on the nigrostriatal dopaminergic system in a future Mars mission. Acta Astronaut 56:367–378

    Article  ADS  Google Scholar 

  5. Cucinotta FA, Schimmerling W, Wilson JW, Peterson LE, Saganti PB, Dicello JF (2004) Uncertainties in estimates of the risks of late effects from space radiation. Adv Space Res 34:1383–1389

    Article  ADS  Google Scholar 

  6. Edwards AA (2001) RBE of radiations in space and the implications for space travel. Phys Med 17:147–152

    Google Scholar 

  7. Nelson GA (2003) Fundamental space radiobiology. Gravit Space Biol Bull 16:29–36

    Google Scholar 

  8. Durante M (2004) Heavy ion radiobiology for hadrontherapy and space radiation protection. Radiother Oncol 73:S158–S160

    Article  Google Scholar 

  9. Miller J, Zeitlin C, Cucinotta FA, Heilbronn L, Stephens D, Wilson JW (2003) Benchmark studies of the effectiveness of structural and internal materials as radiation shielding for the International Space Station. Radiat Res 159:381–390

    Article  Google Scholar 

  10. Scampoli P, Durante M, Grossi G, Manti L, Pugliese MG, Gialanella G (2005) Fragmentation studies of relativistic iron ions using plastic nuclear track detectors. Adv Space Res 35:230–235

    Article  ADS  Google Scholar 

  11. Horneck G (1992) Radiobiological experiments in space: a review. Nucl Tracks Radiat Meas 20:185–205

    Article  Google Scholar 

  12. Morrison RD (1994) Cellular changes in microgravity and the design of space radiation experiments. Adv Space Res 14:1005–1019

    Article  ADS  Google Scholar 

  13. Todd P, Pecaut MJ, Fleshner M (1999) Combined effects of space flight factors and radiation on humans. Mutat Res 430:211–219

    Google Scholar 

  14. Horneck G (1999) Impact of microgravity on radiobiological processes and efficiency of DNA repair. Mutat Res 430:221–228

    Google Scholar 

  15. Kiefer J, Pross HD (1999) Space radiation effects and microgravity. Mutat Res 430:299–305

    Google Scholar 

  16. Ohnishi T, Takahashi A, Ohnishi K (2002) Studies about space radiation promote new fields in radiation biology. J Radiat Res 43:S7–S12

    Article  Google Scholar 

  17. Ikenaga M, Hirayama J, Kato T, Kitao H, Han Z-B, Ishizaki K, Nishizawa K, Suzuki F, Cannon TF, Fukui K, Shimazu T, Kamigaichi S, Ishioka N, Matsumiya H (2002) Effect of space flight on the frequency of micronuclei and expression of stress-responsive proteins in cultured mammalian cells. J Radiat Res 43:S141–S147

    Article  Google Scholar 

  18. Klaus DM, Todd P, Schatz (1998) Functional weightlessness during clinorotation of cell suspensions. Adv Space Res 21:1315–1328

    Article  ADS  Google Scholar 

  19. Hammond TG, Hammond JM (2002) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281:12–25

    Google Scholar 

  20. Klaus DM (2001) Clinostats and bioreactors. Gravitat Space Biol Bull 14:55–64

    Google Scholar 

  21. Klaus DM, Benoit MR, Nelson ES, Hammond TG (2004) Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cultures. J Gravitat Physiol 11:17–28

    Google Scholar 

  22. Moore D, Cogoli A (1996) Gravitational and space biology at the cellular level. In: Biological and Medical Research in Space. Springer, Berlin, pp 1–106

    Google Scholar 

  23. Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H (2004) Physiological, pharmacokinetic and pharmacodynamic changes in space. J Clin Pharmacol 44:837–853

    Article  Google Scholar 

  24. Carmeliet G, Vico L, Bouillon R (2001) Space flight: a challenge for normal bone homeostasis. Crit Rev Eukaryot Gene Expr 11:131–144

    Google Scholar 

  25. Strollo F (1999) Hormonal changes in humans during spaceflight. Adv Space Biol Med 7:99–129

    Article  Google Scholar 

  26. Alfrey CP. Udden MM, Laech-Huntoon C, Driscoll T, Picket MH (1996) Control of red blood cell mass in spaceflight. J Appl Physiol 81:98–104

    Google Scholar 

  27. Klein-Nulend J, Bacabac RG, Veldhuijzen JP, Van Loon JJ (2003) Microgravity and bone cell mechanosensitivity. Adv Space Res 32:1551–1559

    Article  ADS  Google Scholar 

  28. Carlsson SI, Bertilaccio MT, Ballabio E, Maier JA (2003) Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization. Biochim Biophys Acta 1642:173–179

    Article  Google Scholar 

  29. Buravkova LB, Romanov YA (2001) The role of cytoskeleton in cellular changes under conditions of simulated microgravity. Acta Astronaut 48:647–650

    Article  ADS  Google Scholar 

  30. Vassy J, Portet S, Beil M, Millot G, Fauvel-Lafeve F, Gasset G, Schoevaert D (2003) Weightlessness acts on human breast cancer cell line MCF-7. Adv Space Res 32:1595–1603

    Article  ADS  Google Scholar 

  31. Hughes-Fulford M (2003) Functions of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32:1585–1593

    Article  ADS  Google Scholar 

  32. Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A (1998) Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen activated T lymphocytes. FEBS Lett 436:115–118

    Article  Google Scholar 

  33. Sonnenfeld G (1999) Effects of space flight on surface marker expression. Adv Space Res 24:815–820

    Article  ADS  Google Scholar 

  34. Sato A, Hamazaki T, Oomura T, Osada H, Kakeya M, Watanabe T, Nakamura T, Nakamura Y, Koshikawa N, Yoshizaki I, Aizawa S, Yoda S, Ogiso A, Takaoki M, Kohno Y, Tanaka H (1999) Effects of microgravity on c-fos gene expression in osteoblast-like MC3T3-E1 cells. Adv Space Res 24:807–813

    Article  ADS  Google Scholar 

  35. Semov A, Semova N, Lacelle C, Marcotte R, Petroulakis E, Proestou G, Wang E (2002) Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts. FASEB J 16:899–901

    Google Scholar 

  36. Sundaresan A, Risin D, Pellis NR (2002) Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cell Dev Biol Anim 38:118–122

    Article  Google Scholar 

  37. Vincent L, Avancena P, Cheng J, Rafii S, Rabbany SY (2005) Simulated microgravity impairs leukemic cell survival through altering VEGFR-2/VEGF-A signaling pathway. Ann Biomed Eng 33:1405–1410

    Article  Google Scholar 

  38. Grimm D, Bauer J, Kossmehl P, Shakibaei M, Schonberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C, Paul M, Cogoli A (2002) Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16:604–606

    Google Scholar 

  39. Wang SS, Good TA (2001) Effect of culture in a rotating wall bioreactor on the physiology of differentiated neuron-like PC12 and SH-SY5Y cells. J Cell Biochem 83:574–584

    Article  Google Scholar 

  40. Sonnenfeld G, Butel JS, Shearer WT (2003) Effects of the space flight environment on the immune system. Rev Environ Health 18:1–17

    Google Scholar 

  41. Sastry KJ, Nehete PN, Savary CA (2001) Impairment of antigen-specific cellular immune responses under simulated microgravity conditions. In Vitro Cell Dev Biol Anim 37:203–208

    Google Scholar 

  42. Konstantinova IV, Rykova MP, Lesnyak AT, Antropova EA (1993) Immune changes during long-duration missions. J Leukoc Biol 54:189–201

    Google Scholar 

  43. Taylor GR (1993) Overview of spaceflight immunology studies. J Leukoc Biol 54:179–188

    Google Scholar 

  44. Cooper D, Pride MW, Brown EL, Risin D, Pellis NR (2001) Suppression of antigen-specific lymphocyte activation in modelled microgravity. In Vitro Cell Dev Biol Anim 37:63–65

    Article  Google Scholar 

  45. Hashemi BB, Penkala JE, Vens C, Huls H, Cubbage M, Sams CF (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13:2071–2082

    Google Scholar 

  46. Schwarzenberg M, Pippia P, Meloni MA, Cossu G, Cogoli-Greuter M, Cogoli A (1999) Signal transduction in T-lymphocytes-a comparison of the data from space, the free-fall machine and the random positioning machine. Adv Space Res 24:793–800

    Article  ADS  Google Scholar 

  47. Cogoli-Greuter M, Lovis P, Vadrucci S. (2004) Signal transduction in T cells: an overview. J Gravit Physiol 11:53–56

    Google Scholar 

  48. Cooper D, Pellis NR (1998) Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J Leukoc Biol 63:550–562

    Google Scholar 

  49. Hatton JP, Gaubert F, Cazenave JP, Schmitt D (2002) Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 87:39–50

    Article  Google Scholar 

  50. Sundaresan A, Risin D, Pellis NR (2004) Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes. J Appl Physiol 96:2028–2033

    Article  Google Scholar 

  51. Licato LL, Grimm EA (1999) Multiple interleukin-2 signaling pathways differentially regulated by microgravity. Immunopharmacology 44:273–279

    Article  Google Scholar 

  52. Esposito RD, Durante M, Gialanella G, Grossi G, Pugliese M, Scampoli P, Jones TD (2001) A model of radiation-induced myelopoiesis in space. Phys Med 17:S181–S182

    Google Scholar 

  53. Buravkova L, Romanov Y, Rykova, Grogorieva O, Merzlikina N (2005) Cell-to-cell interactions in changed gravity: Ground-based and flight experiments. Acta Astronaut 57:67–74

    Article  ADS  Google Scholar 

  54. Szumiel I (1998) Monitoring and signaling of radiation-induced damage in mammalian cells. Radiat Res 150:S92–S101

    Article  Google Scholar 

  55. Qin J, Li L (2003) Molecular anatomy of the DNA damage and replication checkpoints. Radiat Res 159:139–148

    Article  Google Scholar 

  56. Tabony J (1994) Morphological bifurcations involving reaction-diffusion processes during microtubule formation. Science 264:245–248

    Article  ADS  Google Scholar 

  57. Tairbekov MG (1996) Physico-chemical characteristics of biomembranes and cell gravisensitivity 17:161–164

    Google Scholar 

  58. Fujieda S, Mori Y, Nakazawa A, Mogami Y (2001) Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions. Adv Space Res 28:537–543

    Article  ADS  Google Scholar 

  59. Tabony J, Glade N, Papaseit C, Demongeot J (2002) Microtubule self-organisation and its gravity dependence. Adv Space Biol Med 8:19–58

    Article  Google Scholar 

  60. Giachetti E, Ranaldi F, Fiusco A, Tacconi M, Veratti R, Falciani P, Vanni P (1999) Enzyme kinetic parameters are not altered by microgravity. Microgravity Sci Technol 12:36–40

    Google Scholar 

  61. Ranaldi F, Vanni P, Giachetti E (2003) Enzyme catalysis in microgravity: steady-state kinetic analysis of the isocitrate lyase reaction. Biophys Chem 103:169–177

    Article  Google Scholar 

  62. Takahashi A, Ohnishi K, Takahashi S, Masukawa M, Sekikawa K, Amano T, Nakano T, Nagaoka S, Ohnishi T (2000) The effects of microgravity on ligase activity in the repair of DNA double-strand breaks. Int J Radiat Biol 76:783–788

    Article  Google Scholar 

  63. Pross HD, Kost M, Kiefer J (1994) Repair of radiation-induced genetic damage under microgravity. Adv Space Res 14:125–130

    Article  ADS  Google Scholar 

  64. Pross HD, Kiefer J (1999) Repair of cellular radiation damage in space under microgravity conditions. Radiat Environ Biophys 38:133–138

    Article  Google Scholar 

  65. Pross HD, Casares A, Kiefer J (2000) Induction and repair of DNA double-strand breaks under irradiation and microgravity. Radiat Res 153:521–525

    Article  Google Scholar 

  66. Ikenaga M, Yoshikawa I, Kojo M, Ayaki T, Ryo H, Ishizaki K, Kato T, Yamamoto H, Hara R (1997) Mutations induced in Drosophila during space flight. Biol Sci Space 11:346–350

    Article  Google Scholar 

  67. Kobayashi Y, Narumi I, Satoh K, Funayama T, Kikuchi M, Kitayama S, Watanabe H (2004) Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans. Biol Sci Space 18:134–135

    Article  Google Scholar 

  68. Takahashi A, Ohnishi K, Takahashi S, Masukawa M, Sekikawa K, Amano T, Nakano T, Nagaoka S, Ohnishi T (2001) The effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiae. Adv Space Res 28:555–561

    Article  ADS  Google Scholar 

  69. Harada K, Obiya Y, Nakano T, Kawashima M, Miki T, Kobayashi Y, Watanabe H, Okaichi K, Ohnishi T, Mukai C, Nagaoka S (1997) Cancer risk in space due to radiation assessed by determining cell lethality and mutation frequencies of prokaryotes and a plasmid during the Second International Microgravity Laboratory (IML-2) space Shuttle experiment. Oncol Rep 4:691–695

    Google Scholar 

  70. Horneck G, Rettberg P, Baumstark-Khan C, Rink H, Kozubek S, Schäfer M, Schmitz C (1996) DNA repair in microgravity: studies on bacteria and mammalian cells in the experiments REPAIR and KINETICS. J Biotechnol 47:99–112

    Article  Google Scholar 

  71. Tauchi H, Matsumoto E, Iijima K, Mochizuki D, Komatsu K, Ichimasa Y (2003) Effect of gravity stress on fidelity of DNA double-strand break repair. Biol Sci Space 17:255–256

    Google Scholar 

  72. Horneck G, Rettberg P, Kozubek S, Baumstark-Khan C, Rink H, Schafer M, Schmitz C (1997) The influence of microgravity on repair of radiation-induced DNA damage in bacteria and human fibroblasts. Radiat Res 147:376–384

    Article  Google Scholar 

  73. Bender MA, Gooch PC, Kondo S (1967) The Gemini 3 S-4 spaceflight-radiation interaction experiment. Radiat Res 31:91–111

    Article  Google Scholar 

  74. Bender MA, Gooch PC, Kondo S (1968) The Gemini XI S-4 spaceflight-radiation interaction experiment: the human blood experiment. Radiat Res 34:228–238

    Article  Google Scholar 

  75. Durante M, Snigiryova G, Akaeva E, Bogomazova A, Druzhinin S, Fedorenko B, Greco O, Novitskaya N, Rubanovich A, Shevchenko V, Von Recklinghausen U, Obe G (2003) Chromosome aberration dosimetry in cosmonauts after single or multiple space flights. Cytogenet Genome Res 103:40–46

    Article  Google Scholar 

  76. Manti L, Durante M, Cirrone GA, Grossi G, Lattuada M, Pugliese M, Sabini MG, Scampoli P, Valastro L, Gialanella G (2005) Modelled microgravity does not modify the yield of chromosome aberrations induced by high-energy protons in human lymphocytes. Int J Radiat Biol 81:147–155

    Article  Google Scholar 

  77. Canova S, Fiorasi F, Mognato M, Grifalconi M, Reddi E, Russo A, Celotti L (2005) “Modeled microgravity” affects cell response to ionizing radiation and increases genomic damage. Radiat Res 163:191–199

    Article  Google Scholar 

  78. Mognato M, Celotti L (2005) Modeled microgravity affects cell survival and HPRT mutant frequency, but not the expression of DNA repair genes in human lymphocytes irradiated with ionising radiation. Mutat Res 578:417–429

    Google Scholar 

  79. Schwartz RP, Goodwin TJ, Wolf DA (1992) Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Meth 14:51–57

    Article  Google Scholar 

  80. Mosesso P, Schuber M, Seibt D, Schmitz C, Fiore M, Schinoppi A, Penna S, Palitti F (2001) X-ray-induced chromosome aberrations in human lymphocytes in vitro are potentiated under simulated microgravity conditions (Clinostat). Phys Med 17:S264–S266

    Google Scholar 

  81. Durante M, Furusawa Y, Majima H, Kawata T, Gotoh E (1999) Association between G2-phase block and repair of radiation-induced chromosome fragments in human lymphocytes. Radiat Res 151:670–676

    Article  Google Scholar 

  82. Cogoli-Greuter M, Meloni MA, Sciola L, Spano A, Pippia P, Monaco G, Cogoli A (1996) Movements and interactions of leukocytes in microgravity. J Biotechnol 47:279–287

    Article  Google Scholar 

  83. Yang TC, George K, Johnson AS, Durante M, Federenko BS (1997) Biodosimetry results from space flight Mir-18. Radiat Res 148:S17–S23

    Article  Google Scholar 

  84. George K, Durante M, Wu H, Willingham V, Badhwar G, Cucinotta FA (2001) Chromosome aberrations in the blood lymphocytes of astronauts after space flight. Radiat Res 156:731–738

    Article  Google Scholar 

  85. Risin D, Pellis NR (2001) Modelled microgravity inhibits apoptosis in peripheral blood lymphocytes. In Vitro Cell Dev Biol Anim 37:66–72

    Article  Google Scholar 

  86. Sarkar D, Nagaya T, Koga K, Nomura Y, Gruener R, Seo H (2000) Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J Bone Miner Res 15:489–498

    Article  Google Scholar 

  87. Uva BM, Masini MA, Sturla M, Bruzzone F, Giuliani M, Tagliafierro G, Strollo F (2002) Microgravity-induced apoptosis in cultured glial cells. Eur J Histochem 46:209–214

    Google Scholar 

  88. Kossmehl P, Shakibaei M, Cogoli A, Infanger M, Curcio F, Schonberger J, Eilles C, Bauer J, Pickenhahn H, Schulze-Tanzil G, Paul M, Grimm D (2003) Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology 144:4172–4179

    Article  Google Scholar 

  89. Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH Spaceflight alters microtubules, increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018

  90. Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 49:399–418

    Article  ADS  Google Scholar 

  91. Cubano LA, Lewis ML (2000) Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat). Exp Gerontol 35:389–400

    Article  Google Scholar 

  92. Degan P, Sancandi M, Zunino A, Ottaggio L, Viaggi S, Cesarone F, Pippia P, Galleri G, Abbondandolo A (2005) Exposure of human lymphocytes and lymphoblastoid cells to simulated microgravity strongly affects energy metabolism and DNA repair. J Cell Biochem 96:460–469

    Article  Google Scholar 

  93. Shinomiya N, Kuno Y, Yamamoto F, Fukasawa M, Okumura A, Uefuji M, Rokutanda M (2000) Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells. Int J Radiat Oncol Biol Phys 47:767–777

    Article  Google Scholar 

  94. Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Höner zu Bentrup K, Hammond T, Pierson DL (2003) Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Meth 54:1–11

    Article  Google Scholar 

  95. Jakob B, Rudolph JH, Gueven N, Lavin MF, Taucher-Scholz G (2005) Live cell imaging of heavy-ion-induced radiation responses by beamline microscopy. Radiat Res 163:681–690

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Manti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manti, L. Does reduced gravity alter cellular response to ionizing radiation?. Radiat Environ Biophys 45, 1–8 (2006). https://doi.org/10.1007/s00411-006-0037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-006-0037-4

Keywords

Navigation