Skip to main content
Log in

Biokinetic modeling of uranium in man after injection and ingestion

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Uranium is a naturally occurring primordial radioactive element. Small amounts found in air, water, and food are regularly consumed and inhaled by humans. Even the military, medical, and industrial use of depleted uranium can affect humans. There is an appreciable retention of incorporated uranium in skeleton, kidneys, and liver, and a review of respective effective dose coefficients has been given by the International Commission on Radiological Protection (ICRP) in its “Publication 69”; however, data regarding retention in organs or tissues and rates of urinary and fecal excretion for different age groups are incomplete. Therefore, the present study provides retention data that have been calculated for uranium in all compartments and for urinary and fecal excretion, following acute and chronic injection and ingestion for six age groups. The calculations are based on the current ICRP biokinetic model for uranium, and the data can be plotted by using any mathematical software to obtain the retention data at any time after incorporation or to calculate the internal average organ dose induced by uranium provided that specific absorbed fractions are available. The dynamic relationship of the retention in plasma and blood after intravenously and orally administered uranium can easily be derived from the database for injection and ingestion. The calculated contents of uranium in organs or tissues (using the uranium concentration in foodstuffs published by UNSCEAR for Europeans) are compared with autopsy data available in the literature. According to this model, the whole body of a 75-year-old man contains 7 μg uranium, of which 76% is in the skeleton, 1% in the kidneys, and 2.1% in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–d
Fig. 3
Fig. 4a–h
Fig. 5a–h
Fig. 6a–d
Fig. 7a,b

Similar content being viewed by others

Notes

  1. This file is available on request from wli@gsf.de

References

  1. Firestone RB (1996) Table of isotopes, 8th CD-ROM edn. Wiley, New York

    Google Scholar 

  2. ICRP (1995) Age-dependent doses to members of the public from intake of radionuclides, Part 3: ingestion dose coefficients. Publication 69. Annals of the ICRP 25(1). Pergamon, Oxford

  3. ICRP (1996) Age-dependent doses to members of the public from intake of radionuclides, Part 5: compilation of ingestion and inhalation dose coefficients. Publication 72. Annals of the ICRP 26(1). Pergamon, Oxford

  4. Polig E (2001) Modeling the distribution and dosimetry of internal emitters: a review of mathematical procedures using matrix methods. Health Phys 81:492–501

    Google Scholar 

  5. United Nations (2000) Sources and effects of ionizing radiation: 2000 report to the General Assembly, with scientific annexes, Vol 1, Annex B. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York

    Google Scholar 

  6. ICRP (1994) Human respiratory tract model for radiological protection. Publication 66. Annals of the ICRP 24(1–3). Pergamon, Oxford

  7. ICRP (1979) Limits for intakes of radionuclides by workers, Part 1. Publication 30. Annals of the ICRP 2(3–4). Pergamon, Oxford

  8. ICRP (1989) Age-dependent doses to members of the public from intake of radionuclides, Part 1: ingestion dose coefficients. Publication 56. Annals of the ICRP 20(2). Pergamon, Oxford

  9. ICRP (1997) Individual monitoring for internal exposure of workers. Publication 78. Annals of the ICRP 27(3–4). Pergamon, Oxford

  10. ICRP (1993) Age-dependent doses to members of the public from intake of radionuclides, Part 2: ingestion dose coefficients. Publication 67. Annals of the ICRP 23(3–4). Pergamon, Oxford

  11. Skrable K, French C, Chabot G, Major A (1974) A general equation for the kinetics of linear first order phenomena and suggested applications. Health Phys 27:155–157

    Google Scholar 

  12. Birchall A, James AC (1989) A microcomputer algorithm for solving first-order compartmental models involving recycling. Health Phys 56:857–868

    Google Scholar 

  13. Jacquez JA (1985) Compartmental analysis in biology and medicine, 2nd edn. University of Michigan Press, Ann Arbor

    Google Scholar 

  14. Finkelstein L, Carson ER (1986) Mathematical modelling of dynamic biological systems. Research Studies Press, Letchworth, Hertfordshire

    Google Scholar 

  15. Anderson DH (1983) Compartmental modeling and tracer kinetics. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Godfrey K (1983) Compartmental models and their application. Academic Press, London

    Google Scholar 

  17. Clifford AJ, Müller HG (1998) Mathematical modeling in experimental nutrition. Plenum, New York

    Google Scholar 

  18. Barrett PHR, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, Foster DM (1998) SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism 47:484–492

    Google Scholar 

  19. ARC (1999) Advanced continuous simulation language (ACSL) reference manual. AEgis Research Corporation, Huntsville, AL

  20. Stefanovski D, Moate PJ, Boston RC (2003) WinSAAM: a windows-based compartmental modeling system. Metabolism 52:1153–1166

    Google Scholar 

  21. Chen J, Meyerhof DP, Tracy BL (2004) Model results of kidney burdens from uranium intakes. Health Phys 86:3–11

    Google Scholar 

  22. SAAM Institute (1997) SAAM II user guide. SAAM Institute, Seattle, WA

  23. Birchall A, Puncher M, James AC, Marsh JW, Jarvis NS, Peace MS, Davies K, King DJ (2003) IMBAEXPERTTM: internal dosimetry made simple. Radiat Prot Dosim 105:421–425

    Google Scholar 

  24. Bundesministerium der Justiz (2001) Bundesgesetzblatt Teil I: Verordnung für die Umsetzung von EURATOM-Richtlinien zum Strahlenschutz, G 5702, Nr. 38, Bundesanzeiger, Bonn

    Google Scholar 

  25. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2003) Numerical recipes in C++: the art of scientific computing, 2nd edn (reprinted with correction). Cambridge University Press, Cambridge, pp 742–746

    Google Scholar 

  26. Taylor DM, Taylor SK (1997) Environmental uranium and human health. Rev Environ Health 12:147–157

    Google Scholar 

  27. Wrenn ME, Durbin PW, Howard B, Lipsztein J, Rundo J, Still ET, Willis D (1985) Metabolism of ingested U and Ra. Health Phys 48:601–633

    Google Scholar 

  28. Harley NH, Foulkes EC, Hilborne LH, Hudson A, Anthony CR (1999) Depleted uranium, a review of the scientific literature as it pertains to Gulf War illness. RAND Publ. MR-1018/7-OSD. RAND, Santa Monica, CA

    Google Scholar 

  29. Harley NH (2000) The 1999 Lauriston S. Taylor Lecture—back to background: natural radiation and radioactivity exposed. Health Phys 79:121–128

    Google Scholar 

  30. Fisenne IM, Welford GA (1986) Natural U concentrations in soft tissues and bone of New York City residents. Health Phys 50:739–746

    Google Scholar 

  31. Fisenne IM, Perry PM, Welford GA (1980) Determination of uranium isotopes in human bone ash. Anal Chem 52:777–779

    Google Scholar 

  32. Harley NH, Fisenne IM (1990) Distribution and α radiation dose from naturally occurring U, Th and Ra in the human skeleton. Health Phys 58:515–518

    Google Scholar 

  33. Fisenne IM, Perry PM, Harley NH (1988) Uranium in humans. Radiat Prot Dosim 24:127–131

    Google Scholar 

  34. Iyengar GV, Kawamura H, Dang HS, Parr RM, Wang JW, Cho SY, Natera ES (2004) Contents of cesium, iodine, strontium, thorium, and uranium in selected human organs of adult Asian population. Health Phys 87:151–159

    Google Scholar 

  35. Iyengar GV, Kawamura H, Dang HS, Parr RM, Wang J, Akhter P, Cho SY, Natera E, Miah FK, Dojosubroto J, Nguyen MS (2004) Dietary intakes of seven elements of importance in radiological protection by Asian population: comparison with ICRP data. Health Phys 86:557–564

    Google Scholar 

  36. ICRP (2002) Basic anatomical and physiological data for use in radiological protection: reference values. Publication 89. Annals of the ICRP 32(3–4). Pergamon, Oxford

    Google Scholar 

  37. Wrenn ME, Ruth H, Burleigh D, Singh NP (1992) Background levels of uranium in human urine. J Radioanal Nucl Chem 156:407–412

    Google Scholar 

  38. Werner E, Oeh U, Höllriegl V, Roth P, Regulla D (2003) Monitoring of workers and members of the general public for the incorporation of thorium and uranium in the EU and selected countries outside the EU. GSF-Report 09/03. GSF-National Research Center for Environment and Health, Neuherberg

    Google Scholar 

  39. Singh NP, Burleigh DP, Ruth HM, Wrenn ME (1990) Daily U intake in Utah residents from food and drinking water. Health Phys 59:333–337

    Google Scholar 

  40. Fisenne, IM, Perry PM, Decker KM, Keller HW (1987) The daily intake of 234,235,238U, 228,230,232Th and 226,228Ra by New York City residents. Health Phys 53:357–363

    Google Scholar 

  41. Leggett RW (1994) Basis for the ICRP’s age-specific biokinetic model for uranium. Health Phys 67:589–610

    Google Scholar 

  42. Karpas Z (2001) Uranium bioassay-beyond urinalysis. Health Phys 81:460–463

    Google Scholar 

  43. Rodushkin I, Axelsson MD (2000) Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails, Part I: analytical methodology. Sci Total Environ 250:83–100

    Google Scholar 

  44. Rodushkin I, Axelsson MD (2000) Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails, Part II: a study of the inhabitants of northern Sweden. Sci Total Environ 262:21–36

    Google Scholar 

  45. Rodushkin I, Axelsson MD (2003) Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails, Part III: direct analysis by laser ablation. Sci Total Environ 305:23–39

    Google Scholar 

  46. Gonnen R, Kol R, Laichter Y, Marcus P, Halicz L, Lorber A, Karpas Z (2000) Determination of uranium in human hair by acid digestion and FIAS-ICPMS. J Radioanal Nucl Chem 243:559–562

    Google Scholar 

  47. Byrne AR, Benedik L (1991) Uranium content of blood, urine and hair of exposed and non-exposed persons determined by radiochemical neutron activation analysis, with emphasis on quality control. Sci Total Environ 107:143–157

    Google Scholar 

  48. ATSDR (2001) Hair analysis panel discussion: exploring the state of the science. Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  49. Karpas Z, Paz-Tal O, Lorber A, Salonen L, Komulainen H, Auvinen A, Saha H, Kurttio P (2005) Urine, hair and nails as indicators for ingestion of uranium in drinking water. Health Phys 88:229–242

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by EU Contract FIKR-CT2001-00164. Special thanks are due to Ms Roedler-Vogelsang for linguistic revision and for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bo Li.

Appendix

Appendix

Let k3mo, k1y, k5y, k10y, k15y, and kadult be the transfer rates for different ages of an infant, 1-year-old, 5-year-old, 10-year-old, 15-year-old, and adult (≥25 years old), respectively. The transfer rates, kfrom age, change over time, t, after intake at different ages as follows:

$$ k_{{{\text{from}}\,{\text{birth}}}} = \left\{ {\begin{array}{*{20}c} {{k_{{3{\text{mo}}}} ,}} & {{t = {\text{0}} - 90\,{\text{days}}}} \\ {{k_{{3{\text{mo}}}} + {\left[ {{(k_{{1{\text{y}}}} - k_{{3{\text{mo}}}} )} \mathord{\left/ {\vphantom {{(k_{{1{\text{y}}}} - k_{{3{\text{mo}}}} )} {(365 - 90)}}} \right. \kern-\nulldelimiterspace} {(365 - 90)}} \right]} \times (t - 90),}} & {{t = 90 - 365\,{\text{days}}}} \\ {{k_{{1{\text{y}}}} + {\left[ {{(k_{{5{\text{y}}}} - k_{{1{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{5{\text{y}}}} - k_{{1{\text{y}}}} )} {(1,825 - 365)}}} \right. \kern-\nulldelimiterspace} {(1,825 - 365)}} \right]} \times (t - 365),}} & {{t = 365 - 1,825\,{\text{days}}}} \\ {{k_{{5{\text{y}}}} + {\left[ {{(k_{{10{\text{y}}}} - k_{{5{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{10{\text{y}}}} - k_{{5{\text{y}}}} )} {(3,650 - 1,825)}}} \right. \kern-\nulldelimiterspace} {(3,650 - 1,825)}} \right]} \times (t - 1,825),}} & {{t = 1,825 - 3,650\,{\text{days}}}} \\ {{k_{{10{\text{y}}}} + {\left[ {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} {(5,475 - 3,650)}}} \right. \kern-\nulldelimiterspace} {(5,475 - 3,650)}} \right]} \times (t - 3,650),}} & {{t = 3,650 - 5,475\,{\text{days}}}} \\ {{k_{{15{\text{y}}}} + {\left[ {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} {(9,125 - 5,475)}}} \right. \kern-\nulldelimiterspace} {(9,125 - 5,475)}} \right]} \times (t - 5,475),}} & {{t = 5,475 - 9,125\,{\text{days}}}} \\ {{k_{{{\text{adult}}}} ,}} & {{t \geq 9,125\,{\text{days}}}} \\ \end{array} } \right. $$
(2)
$$ k_{{{\text{from}}\,3{\text{mo}}}} = \left\{ {\begin{array}{*{20}c} {{k_{{3{\text{mo}}}} + {\left[ {{(k_{{1{\text{y}}}} - k_{{3{\text{mo}}}} )} \mathord{\left/ {\vphantom {{(k_{{1{\text{y}}}} - k_{{3{\text{mo}}}} )} {(275 - 0)}}} \right. \kern-\nulldelimiterspace} {(275 - 0)}} \right]} \times (t - 0),}} & {{t = 0 - 275\,{\text{days}}}} \\ {{k_{{1{\text{y}}}} + {\left[ {{(k_{{5{\text{y}}}} - k_{{1{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{5{\text{y}}}} - k_{{1{\text{y}}}} )} {(1,735 - 275)}}} \right. \kern-\nulldelimiterspace} {(1,735 - 275)}} \right]} \times (t - 275),}} & {{t = 275 - 1,735\,{\text{days}}}} \\ {{k_{{5{\text{y}}}} + {\left[ {{(k_{{10{\text{y}}}} - k_{{5{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{10{\text{y}}}} - k_{{5{\text{y}}}} )} {(3,560 - 1,735)}}} \right. \kern-\nulldelimiterspace} {(3,560 - 1,735)}} \right]} \times (t - 1,735),}} & {{t = 1,735 - 3,560\,{\text{days}}}} \\ {{k_{{10{\text{y}}}} + {\left[ {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} {(5,385 - 3,560)}}} \right. \kern-\nulldelimiterspace} {(5,385 - 3,560)}} \right]} \times (t - 3,560),}} & {{t = 3,560 - 5,385\,{\text{days}}}} \\ {{k_{{15{\text{y}}}} + {\left[ {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} {(9,035 - 5,385)}}} \right. \kern-\nulldelimiterspace} {(9,035 - 5,385)}} \right]} \times (t - 5,385),}} & {{t = 5,385 - 9,035\,{\text{days}}}} \\ {{k_{{{\text{adult}}}} ,}} & {{t \geq 9,035\,{\text{days}}}} \\ \end{array} } \right. $$
(3)
$$ k_{{{\text{from}}\,1{\text{y}}}} = \left\{ {\begin{array}{*{20}c} {{k_{{1{\text{y}}}} + {\left[ {{(k_{{5{\text{y}}}} - k_{{1{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{5{\text{y}}}} - k_{{1{\text{y}}}} )} {(1,460 - 0)}}} \right. \kern-\nulldelimiterspace} {(1,460 - 0)}} \right]} \times (t - 0),}} & {{t = 0 - 1,460\,{\text{days}}}} \\ {{k_{{5{\text{y}}}} + {\left[ {{(k_{{10{\text{y}}}} - k_{{5{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{10{\text{y}}}} - k_{{5{\text{y}}}} )} {(3,285 - 1,460)}}} \right. \kern-\nulldelimiterspace} {(3,285 - 1,460)}} \right]} \times (t - 1,460),}} & {{t = 1,460 - 3,285\,{\text{days}}}} \\ {{k_{{10{\text{y}}}} + {\left[ {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} {(5,110 - 3,285)}}} \right. \kern-\nulldelimiterspace} {(5,110 - 3,285)}} \right]} \times (t - 3,285),}} & {{t = 3,285 - 5,110\,{\text{days}}}} \\ {{k_{{15{\text{y}}}} + {\left[ {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} {(8,765 - 5,110)}}} \right. \kern-\nulldelimiterspace} {(8,765 - 5,110)}} \right]} \times (t - 5,110),}} & {{t = 5,110 - 8,765\,{\text{days}}}} \\ {{k_{{{\text{adult}}}} ,}} & {{t \geq 8,765\,{\text{days}}}} \\ \end{array} } \right. $$
(4)
$$ k_{{{\text{from}}\,5{\text{y}}}} = \left\{ {\begin{array}{*{20}c} {{k_{{5{\text{y}}}} + {\left[ {{(k_{{10{\text{y}}}} - k_{{5{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{10{\text{y}}}} - k_{{5{\text{y}}}} )} {(1,825 - 0)}}} \right. \kern-\nulldelimiterspace} {(1,825 - 0)}} \right]} \times (t - 0),}} & {{t = 0 - 1,825\,{\text{days}}}} \\ {{k_{{10{\text{y}}}} + {\left[ {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} {(3,650 - 1,825)}}} \right. \kern-\nulldelimiterspace} {(3,650 - 1,825)}} \right]} \times (t - 1,825),}} & {{t = 1,825 - 3,650\,{\text{days}}}} \\ {{k_{{15{\text{y}}}} + {\left[ {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} {(7,300 - 3,650)}}} \right. \kern-\nulldelimiterspace} {(7,300 - 3,650)}} \right]} \times (t - 3,650),}} & {{t = 3,650 - 7,300\,{\text{days}}}} \\ {{k_{{{\text{adult}}}} ,}} & {{t \geq 7,300\,{\text{days}}}} \\ \end{array} } \right. $$
(5)
$$ k_{{{\text{from}}\,10{\text{y}}}} = \left\{ {\begin{array}{*{20}c} {{k_{{10{\text{y}}}} + {\left[ {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{15{\text{y}}}} - k_{{10{\text{y}}}} )} {(1,825 - 0)}}} \right. \kern-\nulldelimiterspace} {(1,825 - 0)}} \right]} \times (t - 0),}} & {{t = 0 - 1825\,{\text{days}}}} \\ {{k_{{15{\text{y}}}} + {\left[ {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} {(5,475 - 1,825)}}} \right. \kern-\nulldelimiterspace} {(5,475 - 1,825)}} \right]} \times (t - 1,825),}} & {{t = 1,825 - 5,475\,{\text{days}}}} \\ {{k_{{{\text{adult}}}} ,}} & {{t \geq 5,475\,{\text{days}}}} \\ \end{array} } \right. $$
(6)
$$ k_{{{\text{from}}\,15{\text{y}}}} = \left\{ {\begin{array}{*{20}c} {{k_{{15{\text{y}}}} + {\left[ {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} \mathord{\left/ {\vphantom {{(k_{{{\text{adult}}}} - k_{{15{\text{y}}}} )} {(3,650 - 0)}}} \right. \kern-\nulldelimiterspace} {(3,650 - 0)}} \right]} \times (t - 0),}} & {{t = 0 - 3,650\,{\text{days}}}} \\ {{k_{{{\text{adult}}}} ,}} & {{t \geq 3,650\,{\text{days}}}} \\ \end{array} } \right. $$
(7)
$$ k_{{\rm{from}}\,25{\rm{y}}} = \begin{array}{*{20}l} {k_{{\rm{adult}}} ,} & {t \ge 0\,{\rm{days}}} \\ \end{array} $$
(8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W.B., Roth, P., Wahl, W. et al. Biokinetic modeling of uranium in man after injection and ingestion. Radiat Environ Biophys 44, 29–40 (2005). https://doi.org/10.1007/s00411-005-0272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-005-0272-0

Keywords

Navigation