Advertisement

Radiation and Environmental Biophysics

, Volume 44, Issue 3, pp 201–209 | Cite as

RBE of quasi-monoenergetic 60 MeV neutron radiation for induction of dicentric chromosomes in human lymphocytes

  • R. NolteEmail author
  • K.-H. Mühlbradt
  • J. P. Meulders
  • G. Stephan
  • M. Haney
  • E. Schmid
Original Paper

Abstract

The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient \({\mathbf{\ifmmode\expandafter\bar\else\expandafter\=\fi{\alpha }}} \) of the linear dose–response relationship for dicentric chromosomes was measured to be (0.146±0.016) Gy−1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose–response relationship for dicentric chromosomes established in blood of the same donor for 60Co γ-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14±4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy \( {\ifmmode\expandafter\bar\else\expandafter\=\fi{E}} \)of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient α for 60 MeV neutrons was determined from the measured average yield coefficient \( \ifmmode\expandafter\bar\else\expandafter\=\fi{\alpha}\). For α, a value of (0.115±0.026) Gy−1 was obtained corresponding to an RBEM of 11±4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.

Keywords

Neutron Beam Yield Coefficient Dicentric Chromosome Reference Radiation Liquid Scintillation Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors would like to thank H. Klein for numerous clarifying discussions on this subject. They are grateful to S. Löb for his assistance during the irradiations and to the accelerator staff of UCL for providing the proton beam.

References

  1. 1.
    Sevankaev AV, Zherbin EA, Luchnik NV, Obaturov GM, Kozlov VM, Tyatte EG, Kapchigashev SP (1979) Neutron-induced cytogenetic effects of neutrons of different energies on various types of chromosome aberrations. Genetika 15:1046–1060PubMedGoogle Scholar
  2. 2.
    Sasaki MS, Saigusa S, Kimura I, Kobayashi T, Ikushima T, Kobayashi K, Saito I, Sasuga N, Oka Y, Ito T, Kondo S (1992) Biological effectiveness of fission neutrons: Energy dependency and its implication for the risk assessment. In: Proceedings of the International Conference on Radiation Effects and Protection. Mito, Japan, March 18–20, pp 31–35Google Scholar
  3. 3.
    Edwards AA (1997) The use of chromosomal aberrations in human lymphocytes for biological dosimetry. Radiat Res (Suppl) 148:S39–S44Google Scholar
  4. 4.
    Tanaka K, Gajendiran N, Endo S, Komatsu K, Hoshi M, Kamada N (1999) Neutron energy-dependent initial DNA damage and chromosome exchange. J Radiat Res (Suppl) 40:36–44Google Scholar
  5. 5.
    Schmid E, Schlegel D, Guldbakke S, Kapsch RP, Regulla D (2003) RBE of nearly monoenergetic neutrons at energies of 36–14.6 MeV for the induction of dicentrics in human lymphocytes. Radiat Environ Biophys 42:87–94CrossRefPubMedGoogle Scholar
  6. 6.
    Barjaktarovic N, Savage JRK (1980) RBE for d(42 MeV)-Be neutrons based on chromosome-type aberrations induced in human lymphocytes and scored in cells at first division. Int J Radiat Biol 37:667–675CrossRefGoogle Scholar
  7. 7.
    Heimers A (1999) Cytogenetic analysis in human lymphocytes after exposure to simulated cosmic radiation which reflects the inflight radiation environment. Int J Radiat Biol 75:691–698CrossRefPubMedGoogle Scholar
  8. 8.
    Mitaroff A, Silari M (2002) The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space. Radiat Prot Dosim 102:7–22Google Scholar
  9. 9.
    Schmid E, Regulla D, Guldbakke S, Schlegel D, Bauchinger M (2000) The effectiveness of monoenergetic neutrons at 565 keV in producing dicentric chromosomes in human lymphocytes at low doses. Radiat Res 154:307–312PubMedCrossRefGoogle Scholar
  10. 10.
    Schmid E, Regulla D, Guldbakke S, Schlegel D, Roos M (2002) Relative biological effectiveness of 144 keV neutrons in producing dicentric chromosomes in human lymphocytes compared with 60Co γ-rays under head-to-head conditions. Radiat Res 157:453–460PubMedCrossRefGoogle Scholar
  11. 11.
    Bauchinger M, Schmid E, Streng S, Dresp J (1983) Quantitative analysis of the chromosome damage at first division of human lymphocytes after 60Co γ-irradiation. Radiat Environ Biophys 22:225–229CrossRefPubMedGoogle Scholar
  12. 12.
    Schuhmacher H, Brede HJ, Dangendorf V, Kuhfuss M, Meulders JP, Newhauser WD, Nolte R (1999) Quasi-monoenergetic neutron beams with energies from 25 to 70 MeV. Nucl Instrum Meth A 421:284–295CrossRefADSGoogle Scholar
  13. 13.
    Roos M, Hohlfeld K (1994) The status of the primary standard of water absorbed dose for high energy photon and electron radiation in the PTB. In: Proceedings of IAEA, Vienna, pp 25–33Google Scholar
  14. 14.
    Bol A, Leleux P, Lipnik P, Macq P, Ninane A (1983) A novel design for a fast intense neutron beam. Nucl Instr Meth 214:169–173CrossRefGoogle Scholar
  15. 15.
    Nolte R, Allie MS, Binns PJ, Brooks FD, Buffler A, Dangendorf V, Langen K, Meulders JP, Newhauser WD, Roos F, Schuhmacher H (2002) Measurement of 235U, 238U, 209Bi and natPb fission cross sections using quasi-monoenergetic neutrons with energies from 30 MeV to 200 MeV. J Nucl Technol 2:311–314Google Scholar
  16. 16.
    Carlson A, Chiba S, Hambsch F-J, Olsson N, Smirnov AN (1997) Update for nuclear data standards for nuclear measurements. INDC(NDS)-368, IAEA, ViennaGoogle Scholar
  17. 17.
    ICRU (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU report 44, BethesdaGoogle Scholar
  18. 18.
    Hendricks JS, McKinney GW, Waters LS, Roberts TL, Egdorf HW, Finch JP, Trellue HR,Pitcher EJ, Majo DR,Swinhoe MT, Tobin SJ, Gallmeier FX, David J-C, amilton WB, Lebenhaft J (2004) MCNPX, version 2.5.e. Los Alamos National Laboratory report LA-UR-04–0569Google Scholar
  19. 19.
    Chadwick MB, Young PG, Chiba S, Frankle SC, Hale GM, Hughes HG, Koning AJ, Little RC, McFarlane RE, Prael RE, Waters LS (1999) Cross section evaluations to 150 MeV for accelerator-driven systems and implementation in MCNPX. Nucl Sci Eng 131: 293–328Google Scholar
  20. 20.
    ICRU (1998) Nuclear data for neutron and proton radiotherapy and for radiation protection. ICRU report 63, BethesdaGoogle Scholar
  21. 21.
    Reginatto M, Goldhagen P, Neumann S (2002) Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED. Nucl Instr Meth A 476:242–246CrossRefADSGoogle Scholar
  22. 22.
    Novotny T (1997) Photon spectrometry in mixed neutron–photon fields using NE213 liquid scintillation detectors. PTB report PTB-N-28, Physikalisch-Technische Bundesanstalt BraunschweigGoogle Scholar
  23. 23.
    Kanda R, Jiang T, Hayata I, Kobayashi S (1994) Effects of colcemid concentration on chromosome aberration analysis in human lymphocytes. J Radiat Res 35:41–47PubMedCrossRefGoogle Scholar
  24. 24.
    Rao CR, Chakravarti IM (1956) Some small sample test of significance for a Poisson distribution. Biometrics 12: 264–282CrossRefMathSciNetGoogle Scholar
  25. 25.
    Frome EL, Du Frain RJ (1986) Maximum likelihood estimation for cytogenetic dose–response curves. Biometrics 42:73–84PubMedCrossRefGoogle Scholar
  26. 26.
    Kellerer AM (2003) Error bands for the linear-quadratic dose-effect relation. Radiat Environ Biophys 42:77–83CrossRefPubMedGoogle Scholar
  27. 27.
    International Organization for Standardization (ISO) (1995) Guide to the expression of uncertainty in measurement. GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • R. Nolte
    • 1
    Email author
  • K.-H. Mühlbradt
    • 1
  • J. P. Meulders
    • 2
  • G. Stephan
    • 3
  • M. Haney
    • 4
  • E. Schmid
    • 5
    • 6
  1. 1.Department 6.4 ‘Ion Accelerator and Reference Radiation Fields’Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Université Catholique de Louvain (UCL)Louvain-la-NeuveBelgium
  3. 3.Federal Office for Radiation ProtectionOberschleissheimGermany
  4. 4.Institute of RadiobiologyGSF-National Research Center for Environment and HealthNeuherbergGermany
  5. 5.Radiobiological InstituteUniversity of MunichMunichGermany
  6. 6.GSF-National Research Center for Environment and HealthInstitute of Radiation ProtectionNeuherbergGermany

Personalised recommendations