Skip to main content
Log in

Does UVB radiation induce SoxS gene expression in Escherichia coli cells?

  • Short Communication
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The SoxRS regulon is induced when bacterial cells are exposed to redox-cycling agents such as menadione or paraquat. In this paper it is shown that a physical agent, such as ultraviolet radiation with a wavelength of 312 nm (UVB) can induce soxS gene expression. The results indicate that this induction involves the RpoS protein. Moreover, an unexpected increase of soxS gene expression independent of a functional soxR gene in UVB-irradiated cells has been verified. This increase could be explained by transcription of soxS gene in a rpoS-dependent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A, B
Fig. 4

Abbreviations

LB:

Lúria-Bertani medium

M9:

Minimal medium

M9S:

Minimal medium supplemented

UVA:

320–400 nm ultraviolet radiation

UVB:

290–320 nm ultraviolet radiation

UVC:

100–290 nm ultraviolet radiation.

References

  1. Zheng M, Storz G (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Pomposiello PJ, Demple B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19:109–114

    Article  CAS  PubMed  Google Scholar 

  3. Schellhorn HE, Audia JP, Wei LI, Chang L (1998) Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J Bacteriol 180:6283–6291

    CAS  PubMed  Google Scholar 

  4. Serafini DM, Schellhorn HE (1999) Endonuclease III and endonuclease IV protect Escherichia coli from the lethal and mutagenic effects of near-UV irradiation. Can J Microbiol 45 :632–637

    Article  CAS  PubMed  Google Scholar 

  5. Eisenstark A (1989) Bacterial genes involved in response to near-ultraviolet radiation. Adv Genet 26:99–147

    CAS  PubMed  Google Scholar 

  6. Shennan MG, Palmer CM, Schellhorn HE (1996) Role of Fapy glycosylase and UvrABC excinuclease in the repair of UVA (320–400 nm)-mediated DNA damage in Escherichia coli. Photochem Photobiol 63:68–73

    CAS  PubMed  Google Scholar 

  7. Eisenstark A (1998) Bacterial gene products in response to near-ultraviolet radiation. Mutat Res 422:85–95

    Article  CAS  PubMed  Google Scholar 

  8. Miguel AG, Tyrrell RM (1983) Induction of oxygen-dependent lethal damage by monochromatic UVB (313 nm) radiation: strand breakage, repair and cell death. Carcinogenesis 4:375–380

    CAS  PubMed  Google Scholar 

  9. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

  10. Asad NR, Leitão AC (1991) Effects of metal ion chelators on DNA strand breaks and inactivation produced by hydrogen peroxide in Escherichia coli: detection of iron-independent lesions. J Bacteriol 173:2562–2568

    CAS  PubMed  Google Scholar 

  11. Quillardet P, Hofnung P (1985) The SOS Chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat Res 147:65–78

    Article  CAS  PubMed  Google Scholar 

  12. Asad LM, Asad NR, Silva AB, Almeida CE, Leitão AC (1997) Role of SOS and OxyR systems in the repair of Escherichia coli submitted to hydrogen peroxide under low iron conditions. Biochimie 79:359–364

    Article  CAS  PubMed  Google Scholar 

  13. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

  14. Pádula M, Boiteux S, Felzenszwalb I, Menezes S (1996) Photodynamic action of phycocyanin: damage and repair. J Photochem Photobiol B 32:19–26

    Article  Google Scholar 

  15. Knowles RL, Eisenstark A (1994) Near-ultraviolet mutagenesis in superoxide dismutase-deficient strain of Eschericia coli. Environ Health Perspect 102:88–94

    PubMed  Google Scholar 

  16. Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 87:6181–6185

    CAS  PubMed  Google Scholar 

  17. Nunoshiba T, Demple B (1993) Potent intracellular oxidative stress exerted by the carcinogen 4-nitroquinoline-N-oxide. Cancer Res 53:3250–3252

    CAS  PubMed  Google Scholar 

  18. Kimura T, Nishioka H (1997) Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutat Res 389:237–242

    Article  CAS  PubMed  Google Scholar 

  19. Nunoshiba T, Hidalgo E, Amabile Cuevas CF, Demple B (1992) Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of soxS regulatory gene. J Bacteriol 174:6054–6060

    CAS  PubMed  Google Scholar 

  20. Gaudu P, Dubrac S, Touati D (2000) Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRS regulon. J Bacteriol 182:1761–1763

    Article  CAS  PubMed  Google Scholar 

  21. Agnez-Lima LF, Di Mascio P, Demple B, Menck CF (2001) Singlet molecular oxygen triggers the soxRS regulon of Escherichia coli. Biol Chem 382:1071–1075

    CAS  PubMed  Google Scholar 

  22. Eisenstark A, Calcutt MJ, Becker-Hapak M, Ivanova A (1996) Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Radic Biol Med 21:975–993

    Article  CAS  PubMed  Google Scholar 

  23. Ivanova A, Miller C, Glinsky G, Eisenstark A (1994) Role of rpoS(katF) in oxyR-independent regulation of hydroperoxidase I in Escherichia coli. Mol Microbiol 12:571–578

    CAS  PubMed  Google Scholar 

  24. Becker-Hapak M, Eisenstark A (1995) Role of rpoS in the regulation of glutathione oxidoreductase (gor) in Escherichia coli. FEMS Microbiol Lett 134:39–44

    Article  CAS  PubMed  Google Scholar 

  25. Sammartano LJ, Tuveson RW, Davenport R (1986) Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the Escherichia coli katF locus. J Bacteriol 168:13–21

    CAS  PubMed  Google Scholar 

  26. Tanaka K, Takayanagi Y, Fujita N, Ishihama A, Takahashi H (1993) Heterogeneity of the principal sigma factor in Escherichia coli: The rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci USA 90:3511–3515

    CAS  PubMed  Google Scholar 

  27. Carlioz A, Touati D (1986) Isolation of superoxide dismutase in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630

    CAS  PubMed  Google Scholar 

  28. Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G (1997) A small stable RNA induced by oxidative stress: role as pleiotropic regulator and antimutator. Cell 90: 43–53

    Article  CAS  PubMed  Google Scholar 

  29. Bohannon DE, Connell N, Keener J, Tormo A, Espinosa-Urgel M, Zambrano MM, Kolter R (1991) Stationary-phase-inducible “gearbox” promoters: different effects of katF mutations and role of sigma 70. J Bacteriol 173:4482–4492

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Simplício and A. P. das Neves for their expert technical assistance. The authors also thank R. Kolter, D. Touati, B. Demple and G. Storz for providing bacterial strains and C. F. Menck for helpful comments and suggestions. This work was supported by FINEP, CNPq, FAPERJ, PRONEX and UERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Asad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, A.A., Asad, L.M.B.O., Felzenszwalb, I. et al. Does UVB radiation induce SoxS gene expression in Escherichia coli cells?. Radiat Environ Biophys 43, 219–222 (2004). https://doi.org/10.1007/s00411-004-0253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-004-0253-8

Keywords

Navigation