Radiation and Environmental Biophysics

, Volume 42, Issue 4, pp 237–245 | Cite as

Microirradiation of cells with energetic heavy ions

  • A. Hauptner
  • S. Dietzel
  • G. A. Drexler
  • P. Reichart
  • R. Krücken
  • T. Cremer
  • A. A. Friedl
  • G. Dollinger
Original Paper


The ion microprobe SNAKE at the Munich 14 MV tandem accelerator achieves beam focussing by a superconducting quadrupole doublet and can make use of a broad range of ions and ion energies, from 20 MeV protons to 200 MeV gold ions. Because of these properties, SNAKE is particularly attractive for biological microbeam experiments. Here we describe the adaptation of SNAKE for microirradiation of cell samples. This includes enlarging of the focal distance in order to adjust the focal plane to the specimen stage of a microscope, construction of a beam exit window in a flexible nozzle and of a suitable cell containment, as well as development of procedures for on-line focussing of the beam, preparation of single ions and scanning by electrostatic deflection of the beam. When irradiating with single 100 MeV 16O ions, the adapted set-up permits an irradiation accuracy of 0.91 µm (full width at half maximum) in the x-direction and 1.60 µm in the y-direction, as demonstrated by retrospective track etching of polycarbonate foils. Accumulation of the repair protein Rad51, as detected by immunofluorescence, was used as a biological track detector after irradiation of HeLa cells with geometric patterns of counted ions. Observed patterns of fluorescence foci agreed reasonably well with irradiation patterns, indicating successful adaptation of SNAKE. In spite of single ion irradiation, we frequently observed split fluorescence foci which might be explained by small-scale chromatin movements.


  1. 1.
    Brenner DJ, Hall EJ (2002) Microbeams: a potent mix of physics and biology. Summary of the 5th International Workshop on Microbeam Probes of Cellular Radiation Response. Radiat Prot Dosim 99:283–286Google Scholar
  2. 2.
    Prise KM, Belyakov OV, Folkard M, Ozols A, Schettino G, Vojnovic B, Michael BD (2002) Investigating the cellular effects of isolated radiation tracks using microbeam techniques. Adv Space Res 30:871–876CrossRefPubMedGoogle Scholar
  3. 3.
    Prise KM, Folkard M, Michael BD (2003) A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosim 104:347–355Google Scholar
  4. 4.
    Folkard M, Prise KM, Vojnovic B, Gilchrist S, Schettino G, Belyakov OV, Ozols A, Michael BD (2001)The impact of microbeams in radiation biology. Nucl Instrum Methods Phys Res B 181:426–430CrossRefGoogle Scholar
  5. 5.
    Datzmann G, Dollinger G, Goeden C, Hauptner A, Körner HJ, Reichart P, Schmelmer O (2001) The Munich microprobe SNAKE: first results using 20 MeV protons and 90 MeV sulfur ions. Nucl Instrum Methods Phys Res B 181:20–26CrossRefGoogle Scholar
  6. 6.
    Dollinger G, Datzmann G, Hauptner A, Hertenberger R, Körner HJ, Reichart P, Volckaerts B (2003) The Munich ion microprobe: characteristics and prospect. Nucl Instrum Methods Phys Res B 210:6–13CrossRefGoogle Scholar
  7. 7.
    Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895CrossRefPubMedGoogle Scholar
  8. 8.
    Wang B, Matsuoka S, Carpenter PB, Elledge SJ (2002) 53BP, a mediator of the DNA damage checkpoint. Science 298:1435–1438CrossRefPubMedGoogle Scholar
  9. 9.
    Modesti M, Kanaar R (2001) Homologous recombination: from model organisms to human disease. Genome Biol 2:reviews1014.1–1014.5CrossRefPubMedGoogle Scholar
  10. 10.
    Haaf T, Golub EI, Reddy G, Radding CM, Ward DC (1995) Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci U S A 92:2298–2302PubMedGoogle Scholar
  11. 11.
    Bishop DK (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092PubMedGoogle Scholar
  12. 12.
    Raderschall E, Golub EI, Haaf T (1999) Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci U S A 96:1921–1926CrossRefPubMedGoogle Scholar
  13. 13.
    Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T (2000) Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol 150:283–291CrossRefPubMedGoogle Scholar
  14. 14.
    Tartier L, Spenlehauer C, Newman HC, Folkard M, Prise KM, Michael BD, Menissier-de Murcia J, Mucria G de (2003) Local DNA damage by proton microbeam irradiations induces poly(ADP-ribose) synthesis in mammalian cells. Mutagenesis 18:411–416CrossRefPubMedGoogle Scholar
  15. 15.
    Bishop DK, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum RR, Shinohara A (1998) XRCC3 is required for assembly of Rad51 complexes in vivo. J Biol Chem 273:21482–21488CrossRefPubMedGoogle Scholar
  16. 16.
    Tashiro S, Kotomura N, Shinohara A, Tanaka K, Ueda K, Kamada N (1996) S phase specific formation of the human Rad51 protein nuclear foci in lymphocytes. Oncogene 12:2165–2170PubMedGoogle Scholar
  17. 17.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids, vol. 1. Pergamon, New YorkGoogle Scholar
  18. 18.
    Friedl AA, Kraxenberger A, Eckardt-Schupp F (1995) An electrophoretic approach to the assessment of the spatial distribution of DNA double-strand breaks in mammalian cells. Electrophoresis 16:1865–1874PubMedGoogle Scholar
  19. 19.
    Kraxenberger F, Weber KJ, Friedl AA, Eckardt-Schupp F, Flentje M, Quicken P, Kellerer AM (1998) DNA double-strand breaks in mammalian cells exposed to gamma-rays and very heavy ions. Fragment-size distributions determined by pulsed-field gel electrophoresis. Radiat Environ Biophys 37:107–115CrossRefPubMedGoogle Scholar
  20. 20.
    Prise KM, Pinto M, Newman HC, Michael BD (2001) A review of studies of ionizing radiation-induced double-strand break clustering. Radiat Res 156:572–576PubMedGoogle Scholar
  21. 21.
    Brons S, Taucher-Scholz G, Scholz M, Kraft G (2003) A track structure model for simulation of strand breaks in plasmid DNA after heavy ion irradiation. Radiat Environ Biophys 42:63–72PubMedGoogle Scholar
  22. 22.
    Chen J, Kellerer AM, Rossi HH (1994) Radially restricted linear energy transfer for high-energy protons: a new analytical approach. Radiat Environ Biophys 33:181–187PubMedGoogle Scholar
  23. 23.
    Krämer M, Kraft G (1994) Calculations of heavy-ion structure. Radiat Environ Biophys 33:91–109PubMedGoogle Scholar
  24. 24.
    Reichart P, Dollinger G, Datzmann G, Hauptner A, Hertenberger R, Körner HJ (2003) Sensitive 3D hydrogen microscopy using high energy protons at SNAKE. Nucl Instrum Methods Phys Res B 210:135–141CrossRefGoogle Scholar
  25. 25.
    Hinderer G, Dollinger G, Datzmann G, Körner HJ (1997) Design of the new superconducting microprobe system in Munich. Nucl Instrum Methods Phys Res B 130:51–56CrossRefGoogle Scholar
  26. 26.
    Schmelmer O, Dollinger G, Datzmann G, Goeden C, Körner HJ (1999) A novel high precision slit system. Nucl Instrum Methods Phys Res B 158:107–112CrossRefGoogle Scholar
  27. 27.
    Datzmann G, Dollinger G, Hinderer G, Körner HJ (1999) The superconducting multipole lens for focusing high energy ions. Nucl Instrum Methods Phys Res B 158:74–80CrossRefGoogle Scholar
  28. 28.
    Jakob B, Scholz M, Taucher-Scholz G (2003) Biological imaging of heavy charged-particle tracks. Radiat Res 159:676–684PubMedGoogle Scholar
  29. 29.
    Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5:572–577CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. Hauptner
    • 1
  • S. Dietzel
    • 2
  • G. A. Drexler
    • 3
    • 4
  • P. Reichart
    • 1
  • R. Krücken
    • 1
  • T. Cremer
    • 2
  • A. A. Friedl
    • 3
    • 4
  • G. Dollinger
    • 1
  1. 1.Physics Department E12Technische Universität MünchenGarchingGermany
  2. 2.Department Biologie IILudwigs-Maximilians-Universität München MünchenGermany
  3. 3.Strahlenbiologisches InstitutLudwigs-Maximilians-Universität MünchenMünchenGermany
  4. 4.Institut für Molekulare StrahlenbiologieGSF-ForschungszentrumNeuherbergGermany

Personalised recommendations