Skip to main content
Log in

Soil-to-grain transfer of fallout 137Cs for 28 winter wheat cultivars as observed in field experiments

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

In order to find wheat cultivars with a minimum soil-to-grain transfer of fallout 137Cs, 28 winter wheat cultivars were investigated at 3 different sites with different soil types in Bavaria, Germany. Each cultivar was grown on an area of 10 m2 and harvested in August 1999. The soil-to-grain concentration ratios (Cr) of 137Cs varied by a factor of up to 3 from cultivar to cultivar at a given site and from site-to-site for a given cultivar. The mean Cr values at the three sites, 4.2×10−4, 4.9×10−4 and 7.5×10−4, differed significantly. The fact that no cultivar showed similar Cr values at the three sites indicates a strong influence of the soil on Cr. The cultivars Flair, Kornett and Previa showed a minor uptake of 137Cs compared with the mean of all cultivars at each site. Unlike 137Cs, the 40K concentrations in the wheat grains varied only within a small range (122–190 Bq kg−1) at each site, which is due to the potassium regulation by the plants. For both radionuclides, the differences between the root uptake characteristics of the cultivars may not only be explained by an inter-cultivar variability due to genetic differences between the cultivars, but also by an intra-cultivar variability due to different soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Quantities, units, and terms are used according to ICRU [3]

References

  1. Alexakhin RM, Frissel MJ, Schulte EH, Prister BS, Vetrov VA, Wilkins BT (1993) Change in land use and crop selection. Sci Total Environ 137:169–172

    Article  CAS  Google Scholar 

  2. Mück K (2003) Sustainability of radiologically contaminated territories. J Environ Radioact 65:109–130

    Article  PubMed  Google Scholar 

  3. ICRU (2001) Report 65. Quantities, units and terms in radioecology. International Commission on Radiation Units and Measurements, Bethesda, MD

  4. Victorova N, Voitesekhovitch O, Sorochinsky B, Vandenhove H, Konoplev A, Konopleva I (2000) Phytoremediation of Chernobyl contaminated land. Radiat Prot Dosim 92:59–64

    CAS  Google Scholar 

  5. Lembrechts J (1993) A review of literature on the effectiveness of chemical amendments in reducing the soil-to-plant transfer of radiostrontium and radiocaesium. Sci Total Environ 137:81–98

    Article  CAS  Google Scholar 

  6. Prister B, Loshchilov N, Perepelyatnikova L, Perepelyatnikov G, Bondar P (1992) Efficiency of measures aimed at decreasing the contamination of agricultural products in areas contaminated by the Chernobyl NPP accident. Sci Total Environ 112:79–87

    Article  CAS  PubMed  Google Scholar 

  7. Smolders E, Merckx R (1993) Some principles behind the selection of crops to minimize radionuclide uptake from soil. Sci Total Environ 137:135–146

    Article  CAS  Google Scholar 

  8. Buysse J, Van den Brande K, Merckx R (1996) Genotypic differences in the uptake and distribution of radiocaesium in plants. Plant Soil 178:265–271

    CAS  Google Scholar 

  9. Alexakhin RM (1993) Countermeasures in agricultural production as an effective means of mitigating the radiological consequences of the Chernobyl accident. Sci Total Environ 137:9–21

    Article  CAS  Google Scholar 

  10. Green N, Wilkins BT, Hammond DJ, Davidson MF (1996) Transfer of radionuclides to crops in an area of land reclaimed from the sea. J Environ Radioact 31:171–187

    Article  CAS  Google Scholar 

  11. Malikov VG, Perepelyatnikova LV, Zhukov BI (1981) Species and variety differences in plants for accumulation of radiostrontium and radiocesium from the soil (in Russian). Agrokhimiya 8:94–98

    Google Scholar 

  12. Gerzabek MH, Horak O, Mück K (1990) Cs-137 soil to plant transfer studies and their implications on parameters used in the Austrian version of ECOSYS. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London. pp 611–618

  13. DBG (1998) Systematik der Böden und der bodenbildenden Substrate Deutschlands. Mitteilg Dtsch Bodenkdl Ges 86:1–180

    Google Scholar 

  14. Soil Survey Staff (1999) Soil taxonomy—a basic system of soil classification for making and interpreting soil surveys, 2nd edn. US Department of Agriculture, Washington DC

  15. VDLUFA (1991) Die Untersuchung von Böden. Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik, Band 1. VDLUFA, Darmstadt

  16. Ritter R (1964) Über die Flüchtigkeit von Cäsiumsalzen bei Veraschung von Lebensmitteln. Naturwissenschaften 51:104–105

    CAS  Google Scholar 

  17. Boppel B (1973) Schnelle Trockenveraschung von Lebensmitteln. Z Anal Chem 266:257–263

    CAS  Google Scholar 

  18. American National Standards Institute (1978) Calibration and usage of germanium detectors for measurements of gamma-ray emission of radionuclides. Report ANSI N42.14

  19. Müller Ch, Henkelmann G (2003) Betrieb von BDF und Untersuchungsschwerpunkte auf landwirtschaftlich genutzten Flächen in Bayern. In: Boden-Dauerbeobachtung in Deutschland—Ergebnisse aus den Ländern. Tagung Berlin 2002. UBA Texte 66/02:72–80

  20. Dreicer M, Hakonson TE, White GC, Whicker FW (1984) Rainsplash as a mechanism for soil contamination of plant surfaces. Health Phys 46:177–187

    CAS  PubMed  Google Scholar 

  21. Amaral ECS, Paretzke HG, Campos MJ, Pires do Rio MA, Franklin M (1994) The contribution of soil adhesion to radiocesium uptake by leafy vegetables. Radiat Environ Biophys 33:373–379

    CAS  PubMed  Google Scholar 

  22. Nisbet AF, Woodman RFM, Haylock RGE (1999) Recommended soil-to-plant transfer factors for radiocaesium and radiostrontium for use in arable systems. Report NRPB-R304. National Radiological Protection Board, Chilton UK

  23. Cierjacks A, Albers B (2002) Zusammenstellung und Auswertung von radiooekologischen Messdaten zum Transfer Boden/Pflanze unter Beruecksichtigung der lokalen Variabilitaet in Deutschland. Final report research project St.Sch. 4222. Bundesamt fuer Strahlenschutz, Neuherberg

  24. Bilo M, Steffens W, Fuehr F, Pfeffer KH (1993) Uptake of 134/137Cs in soil by cereals as a function of several soil parameters of three soil types in Upper Swabia and North Rhine-Westphalia (FRG). J Environ Radioact 19:25–39

    Article  CAS  Google Scholar 

  25. Noordijk H, Van Bergeijk KE, Lembrechts J, Frissel MJ (1992) Impact of ageing and weather conditions on soil-to-plant transfer of radiocesium and radiostrontium. J Environ Radioact 15:277–286

    Article  CAS  Google Scholar 

  26. Sandalls J, Bennett L (1992) Radiocaesium in upland herbage in Cumbria, UK: a three year field study. J Environ Radioact 16:147–165

    CAS  Google Scholar 

  27. Sachs L (1984) Applied statistics. Springer, New York

  28. Smolders E, Van den Brande K, Merckx R (1997) Concentrations of 137Cs and K in soil solution predict the plant availability of 137Cs in soils. Environ Sci Technol 31:3432–3438

    Article  CAS  Google Scholar 

  29. White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241–256

    Article  CAS  Google Scholar 

  30. Coughtrey PJ, Kirton JA, Mitchell NG, Morris C (1989) Transfer of radioactive caesium from soil to vegetation and comparison with potassium in upland grasslands. Environ Pollut 62:281–315

    Article  CAS  Google Scholar 

  31. Shaw G, Bell JNB (1989) The kinetics of caesium absorption by roots of winter wheat and the possible consequences for the derivation of soil-to-plant transfer factors for radiocaesium. J Environ Radioact 10:213–231

    Article  CAS  Google Scholar 

  32. Zhu Y-G, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge fruitful discussions with K. Bunzl. This work was supported by the Bavarian State Ministry of the Environment, Public Health, and Consumer Protection, under contract no. 96-8816.09-2000/4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schimmack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schimmack, W., Zimmermann, G., Sommer, M. et al. Soil-to-grain transfer of fallout 137Cs for 28 winter wheat cultivars as observed in field experiments. Radiat Environ Biophys 42, 275–284 (2004). https://doi.org/10.1007/s00411-003-0217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-003-0217-4

Keywords

Navigation