Skip to main content

Advertisement

Log in

Diffusion-controlled growth of albite and pyroxene reaction rims

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The growth rates of albite and pyroxene (enstatite + diopside + spinel) reaction rims were measured at 1000°C and ˜700 MPa and found to be parabolic indicating diffusion-controlled growth. The parabolic rate constants for the pyroxene (+ spinel) rims in samples with 0.5 wt% H2O added or initially vacuum dried at 25°C and 250°C are 1.68 ± 0.09, 0.54 ± 0.05 and 0.25 ± 0.06 μm2/h, respectively. The values for albite rim growth in samples initially dried at 60°C and with 0.1 wt% H2O added are 0.25 ± 0.04 and 0.33 ± 0.03 μm2/h, respectively. The latter values were used to derive the product of the grain boundary diffusion coefficient D′A, where A = SiO2, NaAlO2, or NaAlSi−1, and the grain boundary thickness δ in albite. The calculated D′SIO2δ in the albite aggregate for the situations of two different water contents are about 9.9 × 10−23 and 1.4 × 10−22 m3 s−1, respectively. Both the rate constants and the calculated D′Aδ demonstrate that the effect of water content on the grain boundary diffusion rate in monomineralic albite and polymineralic pyroxene (+ spinel) aggregates is small, consistent with recent studies of monomineralic enstatite and forsterite rims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 1 July 1995 / Accepted: 1 August 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Peterson, J. & Yund, R. Diffusion-controlled growth of albite and pyroxene reaction rims. Contrib Mineral Petrol 126, 217–223 (1997). https://doi.org/10.1007/s004100050245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004100050245

Keywords

Navigation