Skip to main content
Log in

Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle?

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A large new database of major, trace elements and Sr-Nd isotopic ratios from 11 lava-field provinces in New South Wales and Queensland, eastern Australia allows detailed interpretation of the origin of these basaltic magmas. Isotopic signatures and trace element patterns identify an OIB-type (oceanic island basalt) source as a dominant component for most of these and some provinces appear to have additional significant components derived from the subcontinental lithospheric mantle (SCLM). The SCLM components have geochemical characteristics that overlap those observed in spinel lherzolite xenoliths (samples of shallow lithospheric mantle) from eastern Australia. These SCLM components show geochemical provinciality that indicates the occurrence of distinct geochemical lithospheric domains reflecting the timing and style of tectonic evolution of different regions. One component reflects modification by subduction-related processes during the late Paleozoic and Mesozoic, one records enrichment by fluids during old metasomatic events and another suggests a metasomatic event involving a distinctive amphibole and apatite-style enrichment. The composition and age distribution of volcanic lava-field provinces older than 10 Ma are consistent with a model involving a regional upwelling (elongated N-S along eastern Australia) of deep hot mantle related to marginal rifting and with OIB-type source geochemical characteristics. Thermal inhomogeneities within this plume swath resulted in small diapirs which may have undergone melt segregation at about 100 km and incorporated varying amounts of SCLM components there or from higher levels of the SCLM during ascent. Subsequent hot-spot generated central volcanoes overprinted this lava-field volcanism, tapped a similar OIB-type source component and truncated the thermal events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam J (1990) The geochemistry and experimental petrology of sodic alkaline basalts from Oatlands, Tasmania. J Petrol 31: 1201–1223

    Google Scholar 

  • Amundsen HEF, Griffin WL, O’Reilly SY (1987) The lower crust and upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics. Tectonophysics 139: 169–185

    Article  Google Scholar 

  • Arndt NT, Christensen U (1992) The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. J Geophys. Res 97: 10967–10981

    Article  Google Scholar 

  • Ben Othman D, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94: 1–21

    Article  Google Scholar 

  • Bradley G, Yoo EK, West P (1984) Geological mapping of Mesozoic to Tertiary diatremes and Illawarra Coal Measures east of Ryl-stone. NSW Dep of Min Resour File 1984/203

  • Bradshaw TK, Hawkesworth CJ, Gallagher K (1993) Basaltic volcanism in the southern Basin and range: no role for a mantle plume. Earth Planet Sci Lett 116: 45–62

    Article  Google Scholar 

  • Burke KC, Wilson JT (1976) Hot spots on the Earth’s surface. In: Decker R, Decker B (eds) Volcanoes and the Earth’s interior. WH Freeman, New York, pp 31–42

    Google Scholar 

  • Campbell IH, Griffiths RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett 99: 79–93

    Article  Google Scholar 

  • Carne JE (1908) Geology and mineral resources of the Western Coalfield. Geol Surv NSW Mem 6

  • Castillo P (1988) The Dupal anomaly as a trace of the upwelling lower mantle. Nature 336: 667–670

    Article  Google Scholar 

  • Cloetingh S, Wortel R (1985) Regional stress field of the Indian Plate. Geophys Res Lett 12: 77–80

    Article  Google Scholar 

  • Coney PJ (1992) The Lachlan belt of eastern Australia and Circum-Pacific tectonic evolution. Tectonophysics 214: 1–25

    Article  Google Scholar 

  • Cull JP, O’Reilly SY, Griffin WL (1992) Xenolith geotherms and crustal models in eastern Australia. Tectonophysics 192: 359–366

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallisation. Earth Planet Sci Lett 53: 189–202

    Article  Google Scholar 

  • Downes H, Seghedi I, Szakacs A, Dobosi G, James DE, Vaselli O, Rigby IJ, Ingram GA, Rex D, Pecskay Z (1995) Petrology and geochemistry of late Tertiary/Quaternary mafic alkaline volcanism in Romania. Lithos 35: 65–81

    Article  Google Scholar 

  • Duggan MB (1989) Central and Doughboy. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 119–120

    Google Scholar 

  • Duncan RA, McDougall I (1989) Volcanic time-space relationships. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 43–54

    Google Scholar 

  • Ewart A, Hawkesworth CJ (1987) The Pleistocene — Recent Tonga — Kermadec arc lavas: interpretation of new isotopic and rare earth data in terms of a depleted mantle source model. J Petrol 28: 495–530

    Google Scholar 

  • Ewart A, Chappell BW, Menzies MA (1988) An overview of the geochemical and isotopic characteristics of the eastern Australian Cainozoic volcanic provinces. J Petrol Spec Vol 225–274

  • Finlayson DM, Collins CDN (1993) Lithospheric velocity structures under the southern New England orogen: evidence for underplating at the Tasman Sea margin, Aust J Earth Sci 40: 141–153

    Article  Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19: 463–513

    Google Scholar 

  • Gallagher K, Hawkesworth C (1992) Dehydration melting and the generation of continental flood basalts. Nature 358: 57–59

    Article  Google Scholar 

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19: 37–53

    Article  Google Scholar 

  • Griffiths RW, Campbell IH (1991) Interaction of plume heads with the Earth’s surface and onset of small-scale convection. J Geophys Res 96: 18295–18310

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Stabel A (1988) Mantle metasomatism beneath western Victoria, Australia, I: Isotopic geochemistry of Cr-diopside lherzolites and Al-augite pyroxenites. Geochim Cosmochim Acta 52: 449–459

    Article  Google Scholar 

  • Hart SR (1984) The DUPAL anomaly: a large-scale isotopic anomaly in the southern hemisphere. Nature 309: 753–756

    Article  Google Scholar 

  • Hart SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90: 273–296

    Article  Google Scholar 

  • Hauri EH, Shimuzu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365: 221–225

    Article  Google Scholar 

  • Hawkesworth CJ, Mantovani MSM, Taylor PN, Palacz Z (1986) Evidence from the Parana of South Brazil for a continental contribution to Dupal basalts. Nature 322: 356–359

    Article  Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions in the arc magmas. Annu Rev Earth Planet Sci 21: 175–204

    Google Scholar 

  • Hensel HO, McCulloch MT, Chappell BW (1985) The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochim Cosmochim Acta 49: 369–384

    Article  Google Scholar 

  • Hill RI (1993) Mantle plumes and continental tectonics. Lithos 30: 193–206

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57: 421–436

    Article  Google Scholar 

  • Ionov DA, Dupuy C, O’Reilly SY, Kopylova MG, Genschaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119: 283–297

    Article  Google Scholar 

  • Irving AJ, Green DH (1976) Geochemistry and petrogenesis of the Newer Basalts of Victoria and South Australia. J Geol Soc Aust 23: 45–66

    Google Scholar 

  • Irving AJ, Menzies MA (1991) Isotopic evidence for variably enriched MORB lithospheric mantle in xenoliths from North Queensland, Australia (abstract). Extended Abstr Fifth Int Kim-berlite Conf, CPRM Spec Publ 2/91, Brasilia pp 186–187

  • Johnson RW, Duggan MB (1989) Rock classification and data bases. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 12–13

    Google Scholar 

  • Johnson RW, Sun S-S, Wellman P (1989) Problems, uncertainties, and issues. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 347–354

    Google Scholar 

  • Kent RW, Storey M, Saunders AD (1992) Large igneous provinces: sites of plume impact or plume incubation. Geology 20: 891–894

    Article  Google Scholar 

  • Kesson SE (1973) The primary geochemistry of the Monaro alkaline volcanics, southeastern Australia — evidence for upper mantle heterogeneity. Contrib Mineral Petrol 42: 93–108

    Article  Google Scholar 

  • Knutson J (1989) East Australian volcanic geology. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 89–155

    Google Scholar 

  • Lipman PW, Logatchev NA, Zorin YA, Chapin CE, Kovalenko V, Morgan P (1989) Intracontinental rift comparisons: Baikal and Rio Grande Rift systems. Am Geophys Union EOS 70: 578–579,586-588

    Article  Google Scholar 

  • Lister GS, Etheridge MA (1989) Detachment models for uplift and volcanism in the eastern highlands, and their application to the origin of passive margin mountains. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 297–313

    Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102: 358–374

    Article  Google Scholar 

  • McDonough WF, McCulloch MT, Sun S-S (1985) Isotopic and geochemical systematics in Tertiary — Recent basalts from southeastern Australia and implications for the evolution of the subcontinental lithosphere. Geochim Cosmochim Acta 49: 2051–2067

    Article  Google Scholar 

  • McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95: 53–72

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29: 625–679

    Google Scholar 

  • Mengel K, Green DH (1989) Stability of amphibole and phlogopite in metasomatised peridotite under water-saturated and water-undersaturated conditions. In: Ross J (ed) Kimberlites and related rocks, vol 1. Geol Soc Aust Spec Publ, pp 14:571–581

  • Menzies MA (1989) Cratonic, circumcratonic and oceanic mantle domains beneath the western United States. J Geophys Res 94: 7899–7915

    Article  Google Scholar 

  • Menzies MA, Wass SY (1983) CO2- and LREE-rich mantle below eastern Australia: a REE and isotopic study of alkaline magmas and apatite-rich mantle xenoliths from the Southern Highlands Provinces, Australia. Earth Planet Sci Lett 65: 287–302

    Article  Google Scholar 

  • Menzies MA, Fan W, Baker J, Thirlwall MF, Zhang M (1992) The lower lithosphere of eastern China: on-craton/off-craton isotopic provinciality or recent recycling (abstract). Int Symp Cenozoic volcanic rocks and deep-seated xenoliths of China and its environs, pp 85–88

  • Meyer HOA (1987) Inclusions in diamond. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 501–522

    Google Scholar 

  • Morgan WJ (1981) Hotspot tracks and the opening of the Atlantic and Indian Oceans. In: Emiliani C (ed) The sea, 7. The oceanic lithosphere. Wiley, New York, pp 443–487

    Google Scholar 

  • Morris PA (1986) Constraints on the origin of mafic alkaline volcanics and included xenoliths from Oberon, New South Wales, Australia. Contrib Mineral Petrol 93: 207–214

    Article  Google Scholar 

  • Muirhead KJ, Drummond BJ (1991) The base of the lithosphere under Australia. Geol Soc Aust Spec Publ 17: 23–40

    Google Scholar 

  • Murray CG (1986) Metallogeny and tectonic development of the Tasman Fold Belt system in Queensland. Ore Geol Rev 1: 315–400

    Article  Google Scholar 

  • Nataf H-C, VanDecar J (1993) Scismological detection of a mantle plume? Nature 364: 115–120

    Article  Google Scholar 

  • Navon O, Stolper E (1987) Geochemical consequences of melt percolation: the upper mantle as a Chromatographie column. J Geol 95: 285–307

    Google Scholar 

  • Nohda S, Cheng H, Tatsumi Y (1991) Geochemical stratification in the upper mantle beneath NE China. Geophys Res Lett 18: 97–100

    Article  Google Scholar 

  • O’Reilly SY (1987) Volatile-rich mantle beneath eastern Australia. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 661–670

    Google Scholar 

  • O’Reilly SY (1989a) Southern Highlands, Grabben Gullen, Abercrombie and Kandos. In: Johnson RW (ed)Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 129–130

    Google Scholar 

  • O’Reilly SY (1989b) Australian xenolith types, distribution and transport. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 267–280

    Google Scholar 

  • O’Reilly SY (1990) The Sydney Basin: composition of basement. Aust J Earth Sci 37: 485–486

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1984) Sr isotope heterogeneity in primitive basaltic rocks, southeastern Australia: correlation with mantle metasomatism. Contrib Mineral Petrol 87: 220–230

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1987) Eastern Australia — 4000 km of mantle samples. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 267–280

    Google Scholar 

  • O’Reilly SY, Griffin WL (1988) Mantle metasomatism beneath western Victoria, Australia. I. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52: 433–447

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1990) Geophysical and petrologic properties of the crust/mantle boundary region, eastern Australia: relevance to the Eromanga-Brisbane transect. Aust Bur Miner Resour Geol Geophys Bull 232: 203–212

    Google Scholar 

  • O’Reilly SY, Griffin WL (1992) Trace-element geochemistry of mantle-derived apatites (abstract). Goldschmidt Conf Abst, Washington, DC, p 17

    Google Scholar 

  • O’Reilly SY, Griffin WL, Stabel A (1988) Evolution of Phanerozoic eastern Australian lithosphere: isotope evidence for magmatic and tectonic underplating. J Petrol Spec Vol 89–108

  • O’Reilly SY, Nicholls IA, Griffin WL (1989) Xenoliths and megacrysts of mantle origin. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 254–274

    Google Scholar 

  • O’Reilly SY, Griffin WL, Ryan CG (1991) Residence of trace elements in metasomatised spinel lherzolite xenoliths: a protonmicroprobe study. Contrib Mineral Petrol 109: 98–113

    Article  Google Scholar 

  • Palacz ZA, Saunders DA (1986) Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest Pacific. Earth Planet Sci Lett 79: 270–280

    Article  Google Scholar 

  • Perry FV, Baldridge WS, DePaolo DS (1987) Role of asthenosphere and lithosphere in the genesis of late Cenozoic basaltic rocks from the Rio Grande Rift and adjacent regions of the southwestern United States. J Geophys Res 92: 9193–9213

    Article  Google Scholar 

  • Plumb KA (1979) The tectonic evolution of Australia. Earth Sci Rev 14: 205–249

    Article  Google Scholar 

  • Price RC, Grey CM (1993) Isotopic and trace element systematics of the Newer volcanic province, Victoria, Australia (abstract). IAV-CEI Abst, Canberra, p 87

    Google Scholar 

  • Ringwood AE (1989) constitution and evolution of the mantle. In: Ross J (ed) Kimberlites and related rocks, vol 1. Geol Soc Aust Spec Publ 14, pp 457–485

  • Stephenson PJ (1989) Northern Queensland. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 89–97

    Google Scholar 

  • Storey M, Saunders AD, Tarney J, Leat P, Thirlwall MF, Thompson RN, Menzies MA, Marriner GF (1987) Geochemical evidence for plume mantle interactions beneath Kerguelen and Heard Islands. Nature 336: 371–374

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ 42, pp 313–346

  • Sun S-S, McDonough WF, Ewart A (1989) Four component model for East Australia basalts. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 333–347

    Google Scholar 

  • Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Mineral 68: 859–879

    Google Scholar 

  • Taylar SR, McLennan SM (1985) The continental crust its composition and evolution. Blackwell Scientific Publication), Oxford

    Google Scholar 

  • Thompson RN (1985) Asthenospheric source of Ugandan ultrapotassic magma? J Geol 93: 603–608

    Article  Google Scholar 

  • Thompson RN, Gibson SA (1991) Subcontinental mantle plumes, hotspots and pre-existing thinspots. J Geol Soc London 148: 973–977

    Article  Google Scholar 

  • Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of the relative roles of a crust and mantle in magma genesis: an elemental approach. Philos Trans R Soc London A310: 549–590

    Article  Google Scholar 

  • Veevers JJ (1984) Phanerozoic earth history of Australia. Clarendon Press, Oxford

    Google Scholar 

  • Veevers JJ (1986) Break-up of Australia and Antarctica estimated as mid-Cretaceous (95 ± 5 Ma) from magnetic and seismic data at the continental margin. Earth Planet Sci Lett 77: 91–99

    Article  Google Scholar 

  • Wallace ME, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for the solidus positions and mantle metasomatism. Mineral Petrol 44: 1–19

    Article  Google Scholar 

  • Wass SY (1979) Multiple origins of clinopyroxenes in alkali basalticrocks. Lithos 12: 115–132

    Article  Google Scholar 

  • Wass SY (1980) Geochemistry and origin of xenolith-bearing and related alkali basaltic rocks from the Southern Highlands, New South Wales. Am J Sci 280-A: 639–666.

    Google Scholar 

  • Wass SY, Irving AJ (1976) Xenoliths and Megacrysts in Volcanic Rocks of Eastern Australia. Australian Museum, Sydney

    Google Scholar 

  • Weaver BL (1991) The origin of oceanic island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104: 381–397

    Article  Google Scholar 

  • Weaver BL, Wood DA, Tarney J, Joron JL (1987) Geochemistry of ocean island basalts from the South Atlantic: Ascension, Bouvet, St Helena, Gough, and Tristan da Cunha. In: Fitton JG, Upton BGJ (eds) Alkali igneous rocks. Geol Soc London Spec Publ 30, pp 253–267

  • Weis D, Frey FA, Saunders A, Gibson I, Le.g. 121 Scientific Shipboard Party (1991) Ninetyeast Ridge (Indian Ocean): a 5000 km record of a DUPAL mantle plume. Geology 19: 99–102

    Article  Google Scholar 

  • Wellman P, McDougall I (1974a) Cainozoic igneous activity in eastern Australia. Tectonophysics 23: 49–65

    Article  Google Scholar 

  • Wellman P, McDougall I (1974b) Potassium-argon ages of the Cainozoic volcanic rocks of New South Wales, Australia. J Geol Soc Aust 21: 247–272

    Google Scholar 

  • Whitehead JA, Luther DS (1975) Dynamics of laboratory diapir and plume models. J Geophys Res 80: 705–717

    Article  Google Scholar 

  • Wilkinson JFG (1975) Ultramafic inclusions and high pressure megacrysts from a nephelinite sill, Nandewar Mountains, northeastern New South Wales, and their bearing on the origin of certain ultramafic inclusions in alkaline volcanic rocks. Contrib Mineral Petrol 51: 235–262

    Article  Google Scholar 

  • Wyborn D (1989) Geology of eastern Australia. In: Johnson RW (ed) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 18–21

    Google Scholar 

  • Zhang M, Menzies MA, Suddaby P, Thirlwall MF (1991) EMI signature from within the post-Archaean subcontinental lithospheric mantle: isotopic evidence from the potassic volcanic rocks in NE China. Geochem J 25: 387–398

    Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics.Annu Rev Earth Planet Sci 14: 493–571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial responsibility: A. Hofmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Reilly, S.Y., Zhang, M. Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle?. Contrib Mineral Petrol 121, 148–170 (1995). https://doi.org/10.1007/s004100050096

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004100050096

Keywords

Navigation