Skip to main content
Log in

K-feldspar–quartz and K-feldspar–plagioclase phase boundary interactions in garnet–orthopyroxene gneiss's from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A detailed study based on textural observations combined with microanalysis [back scattered electron imaging (BSE) and electron microprobe analysis (EMPA)] and microstructural data transmission electron microscopy (TEM) has been made of K-feldspar micro-veins along quartz–plagioclase phase and plagioclase–plagioclase grain boundaries in granulite facies, orthopyroxene–garnet-bearing gneiss's (700–825 °C, 6–8 kbar) from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. The K-feldspar micro-veins are commonly associated with quartz and plagioclase and are not found in quartz absent regions of the thin section. This association appears to represent a localised reaction texture resulting from a common high grade dehydration reaction, namely: amphibole + quartz = orthopyroxene + clinopyroxene + plagioclase + K-feldspar + H2O, which occurred during the granulite facies metamorphism of these rocks. There are a number of lines of evidence for this. These include abundant Ti-rich biotite, which was apparently stable during granulite facies metamorphism, and total lack of amphibole, which apparently was not. Disorder between Al and Si in the K-feldspar indicates crystallisation at temperatures >500 °C. Myrmekite and albitic rim intergrowths in the K-feldspar along the K-feldspar–plagioclase interface could only have formed at temperatures >500–600 °C. Symplectic intergrowths of albite and Ca-rich plagioclase between these albitic rim intergrowths and plagioclase suggest a high temperature grain boundary reaction, which most likely occurred at the start of decompression in conjunction with a fluid phase. Relatively high dislocation densities (>2 × 109 to 3 × 109/cm2) in the K-feldspar suggest plastic deformation at temperatures >500 °C. We propose that this plastic deformation is linked with the extensional tectonic environment present during the mafic underplating event responsible for the granulite facies metamorphism in these rocks. Lastly, apparently active garnet grain rims associated with side inclusions of K-feldspar and quartz and an exterior K-feldspar micro-vein indicate equilibrium temperatures within 20–30 °C of the peak metamorphic temperatures estimated for the sample (770 °C). Contact between these K-feldspar micro-veins and Fe-Mg silicate minerals, such as garnet, orthopyroxene, clinopyroxene or biotite along the interface, is observed to be very clean with no signs of melt textures or alteration to sheet silicates. This lends support to the idea that these micro-veins did not originate from a melt and, if fluid induced, that the water activity of these fluids must have been relatively low. All of these lines of evidence point to a high grade origin for the K-feldspar micro-veins and support the hypothesis that they formed during the granulite facies metamorphism of the metabasite layers in an extensional tectonic environment as the consequence of localised dehydration reactions involving the breakdown of amphibole in the presence of quartz to orthopyroxene, clinopyroxene, plagioclase, K-feldspar and H2O. It is proposed that the dehydration of the metabasite layers to an orthopyroxene–garnet-bearing gneiss over a 4-km traverse in the upper Val Strona during granulite facies metamorphism was a metasomatic event initiated by the presence of a high-grade, low H2O activity fluid (most likely a NaCl–KCl supercritical brine), related to the magmatic underplating event responsible for the Mafic Formation; and that this dehydration event did not involve partial melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 15 February 2000 / Accepted: 26 June 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harlov, D., Wirth, R. K-feldspar–quartz and K-feldspar–plagioclase phase boundary interactions in garnet–orthopyroxene gneiss's from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. Contrib Mineral Petrol 140, 148–162 (2000). https://doi.org/10.1007/s004100000185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004100000185

Keywords

Navigation