Skip to main content
Log in

Petrological and geochemical constraints of mantle peridotites on the magma-starved Yap Arc formed by ultra-slow subduction

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Oceanic plateaus inevitably interact with trench–arc systems during oceanic subduction, but the subduction mechanisms are poorly understood. The Yap trench–arc system is an important part of the western Pacific subduction zone, and is undergoing ultra-slow subduction of the Caroline Plateau. As such, it is ideal for investigating the magmatic–tectonic processes of oceanic plateau subduction. In this study, we document the mineralogy and geochemistry of serpentinized peridotites from the Yap–Mariana Junction. These peridotites can be subdivided into two groups. Group I samples have intermediate to high whole-rock CaO contents and Al2O3/SiO2 values, low chromite Cr# (as low as 0.16) and high chromite Ga/Fe3+# values, and low pyroxene Mg# values relative to Mariana Forearc peridotites. These features are consistent with those of abyssal peridotites. Based on La/Sm ratios, two types of clinopyroxene are identified in group 1 samples. Melting models show that the light rare earth element (LREE)-depleted patterns of type 1 clinopyroxene can be produced by ~  5% fractional melting or ~  6% open-system melting of depleted upper mantle, while the nearly flat REE patterns of type 2 clinopyroxene are related to LREE-enriched melts. These clinopyroxene compositions record melt impregnation and reactions in the mantle beneath the Yap–Mariana Junction. In contrast, group 2 samples have similar compositions to forearc peridotites, such as low whole-rock Al2O3/SiO2 values, and high chromite Cr# (up to 0.73) and low chromite Ga/Fe3+# values. The different trends in plots of chromite Cr#–TiO2 and 100Ti/Fe3+#–Ga/Fe3+# indicate that the group 1 samples experienced reactions with mid-ocean ridge basalt-like melts, whereas the group 2 samples experienced reactions with island arc tholeiite-like melts. The Mg#, TiO2, and Al2O3 values of the melts in equilibrium with chromite in the group 1 samples are consistent with those of the Parece Vela Basin basalts, while those from group 2 samples define a compositional trend similar to arc-related volcanic rocks. Therefore, this region experienced a tectonic transition from a back-arc spreading ridge to a subduction zone. Compared with the Mariana Trench that is undergoing normal oceanic crustal subduction, the absence of volcanic rocks at the Yap Trench are the response to ultra-slow subduction of the Caroline Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data in this study are available in the supplementary materials.

References

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113(3–4):191–204

    Article  Google Scholar 

  • Beccaluva L, Serri G, Dostal J (1986) Geochemistry of volcanic rocks from the mariana, yap and palau trenches bearing on the tectono-magmatic evolution of the mariana trench-arc-backarc system. Developments in geotectonics, vol 21. Elsevier, pp 481–508

    Google Scholar 

  • Birner SK, Warren JM, Cottrell E, Davis FA, Kelley KA, Falloon TJ (2017) Forearc peridotites from tonga record heterogeneous oxidation of the mantle following subduction initiation. J Petrol 58(9):1755–1780

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. Developments in geochemistry, vol 2. Elsevier, pp 63–114

    Google Scholar 

  • Chen L, Tang L, Li X, Dong Y, Yu X, Ding W (2019a) Geochemistry of peridotites from the yap trench, Western Pacific: implications for subduction zone mantle evolution. Int Geol Rev 61(9):1037–1051

    Article  Google Scholar 

  • Chen L, Tang L, Li X, Zhang J, Wang W, Li Z, Wang H, Wu X, Chu F (2019b) Ancient melt depletion and metasomatic history of the subduction zone mantle: osmium isotope evidence of peridotites from the Yap Trench. West Pac Minerals 9(12):717

    Google Scholar 

  • Cloos M (1993) Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, Isl Arcs, spreading ridges, and seamounts. Geol Soc Am Bull 105(6):715–737

    Article  Google Scholar 

  • Crawford A, Beccaluva L, Serri G, Dostal J (1986) Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the yap and mariana trenches. Earth Planet Sci Lett 80(3–4):265–280

    Article  Google Scholar 

  • Dare SA, Pearce JA, McDonald I, Styles MT (2009) Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–FeIII systematics in chrome–spinel. Chem Geol 261(3–4):199–216

    Article  Google Scholar 

  • Dick HJ, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86(1):54–76

    Article  Google Scholar 

  • Doley B, Saha A, Verencar A, Mohan MR (2022) Melt generation and trace element fractionation of intermediate arc magma from Andaman subduction zone. Geochemistry 82(3):125899

    Article  Google Scholar 

  • Dong D, Zhang Z, Bai Y, Fan J, Zhang G (2018) Topographic and sedimentary features in the yap subduction zone and their implications for the caroline ridge subduction. Tectonophysics 722:410–421

    Article  Google Scholar 

  • Dygert N, Liang Y (2015) Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites. Earth Planet Sci Lett 420:151–161

    Article  Google Scholar 

  • Fan J, Zheng H, Zhao D, Dong D, Bai Y, Li C, Zhang Z (2022) Seismic structure of the caroline plateau-yap trench collision zone. Geophys Res Lett 49(6):e2022GL098017

    Article  Google Scholar 

  • Fujiwara T, Tamura C, Nishizawa A, Fujioka K, Kobayashi K, Iwabuchi Y (2000) Morphology and tectonics of the yap trench. Mar Geophys Res 21(1):69–86

    Article  Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2013) The mean composition of ocean ridge basalts. Geochem Geophy Geosy 14(3):489–518

    Article  Google Scholar 

  • Gong X, Tian L, Dong Y (2022) Contrasting melt percolation and melt-rock reactions in the parece vela back-arc oceanic lithosphere. Philipp Sea: A Mineral Perspect Lithos 422:106727

    Google Scholar 

  • Gorczyk W, Willner AP, Gerya TV, Connolly JA, Burg J-P (2007) Physical controls of magmatic productivity at Pacific-type convergent margins: numerical modelling. Phys Earth Planet Inter 163(1–4):209–232

    Article  Google Scholar 

  • Hawkins J, Batiza R (1977) Metamorphic rocks of the Yap arc-trench system. Earth Planet Sci Lett 37(2):216–229

    Article  Google Scholar 

  • Hawkins JW, Bloomer SH, Evans CA, Melchior JT (1984) Evolution of intra-oceanic arc-trench systems. Tectonophysics 102(1–4):175–205

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJ, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410(6829):677–681

    Article  Google Scholar 

  • Holt AF, Condit CB (2021) Slab temperature evolution over the lifetime of a subduction zone. Geochem Geophy Geosy 22(6):e2020GC009476

    Article  Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wänke H (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Lunar and Proc Lunar Planet Sci Conf 10:2031–2050

    Google Scholar 

  • Johnson KT, Dick HJ, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95(B3):2661–2678

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671

    Article  Google Scholar 

  • Kang J, Chen L-M, Yu S-Y, Zheng W-Q, Dai Z-H, Zhou S-H, Ai Q-X (2022) Chromite geochemistry of the Jinchuan Ni-Cu sulfide-bearing ultramafic intrusion (NW China) and its petrogenetic implications. Ore Geol Rev 141:104644

    Article  Google Scholar 

  • Karig DE (1971) Structural history of the mariana Isl Arc system. Geol Soc Am Bull 82(2):323–344

    Article  Google Scholar 

  • Kent AJ, Elliott TR (2002) Melt inclusions from Marianas arc lavas: implications for the composition and formation of Isl Arc magmas. Chem Geol 183(1–4):263–286

    Article  Google Scholar 

  • Kerr AC, Mahoney JJ (2007) Oceanic plateaus: Problematic plumes, potential paradigms. Chem Geol 241(3–4):332–353

    Article  Google Scholar 

  • Knesel KM, Cohen BE, Vasconcelos PM, Thiede DS (2008) Rapid change in drift of the Australian plate records collision with ontong java plateau. Nature 454(7205):754–757

    Article  Google Scholar 

  • Kobayashi K (2004) Origin of the palau and Yap trench-arc systems. Geophys J Int 157(3):1303–1315

    Article  Google Scholar 

  • Lee J, Stern RJ (1998) Glass inclusions in Mariana Arc phenocrysts: a new perspective on magmatic evolution in a typical intra-oceanic arc. J Geol 106(1):19–34

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1–2):34–43

    Article  Google Scholar 

  • Liu Z, Dai L, Li S, Wang L, Xing H, Liu Y, Ma F, Dong H, Li F (2021) When plateau meets subduction zone: a review of numerical models. Earth-Sci Rev 215:103556

    Article  Google Scholar 

  • Loocke M, Snow JE, Ohara Y (2013) Melt stagnation in peridotites from the godzilla megamullion oceanic core complex, parece vela basin, Philippine sea. Lithos 182:1–10

    Article  Google Scholar 

  • Maurel C, Maurel P (1982) Étude expérimental de la distribution de l’aluminium entre bain silicate basique et spinelle chromifère. Implications pétrogenetiques: teneur en chrome des spinelles. Bulletin de Mineralogie 105:197–202

    Article  Google Scholar 

  • McGeary S, Nur A, Ben-Avraham Z (1985) Spatial gaps in arc volcanism: the effect of collision or subduction of oceanic plateaus. Tectonophysics 119(1–4):195–221

    Article  Google Scholar 

  • Mendi DJ, González-Jiménez JM, Proenza JA, Urbani F, Gervilla F (2020) Petrogenesis of the chromitite body from the cerro colorado ophiolite, paraguaná peninsula. Venezuela Bol Soc Geol Mex 72(3):27

    Google Scholar 

  • Michibayashi K, Ohara Y, Stern R, Fryer P, Kimura JI, Tasaka M, Harigane Y, Ishii T (2009) Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana trench: results of a shinkai 6500 dive. Geochem Geophy Geosy. https://doi.org/10.1029/2008GC002197

    Article  Google Scholar 

  • Murata K, Maekawa H, Yokose H, Yamamoto K, Fujioka K, Ishii T, Chiba H, Wada Y (2009) Significance of serpentinization of wedge mantle peridotites beneath Mariana forearc, western Pacific. Geosphere 5(2):90–104

    Article  Google Scholar 

  • Nair R, Chacko T (2008) Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology 36(7):583–586

    Article  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38(8):1047–1074

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45(12):2423–2458

    Article  Google Scholar 

  • Ohara Y, Ishii T (1998) Peridotites from the southern Mariana forearc: heterogeneous fluid supply in mantle wedge. Isl Arc 7(3):541–558

    Article  Google Scholar 

  • Ohara Y, Yoshida T, Kato Y, Kasuga S (2001) Giant megamullion in the parece vela backarc basin. Mar Geophys Res 22(1):47–61

    Article  Google Scholar 

  • Ohara Y, Fujioka K, Ishizuka O, Ishii T (2002a) Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine sea plate. Chem Geol 189(1–2):35–53

    Article  Google Scholar 

  • Ohara Y, Stern RJ, Ishii T, Yurimoto H, Yamazaki T (2002b) Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin. Contrib Mineral Petrol 143(1):1–18

    Article  Google Scholar 

  • Ohara Y, Fujioka K, Ishii T, Yurimoto H (2003) Peridotites and gabbros from the parece vela backarc basin: unique tectonic window in an extinct backarc spreading ridge. Geochem Geophy Geosy 4(7):8611. https://doi.org/10.1029/2002GC000469

    Article  Google Scholar 

  • Okamura H, Arai S, Kim Y-U (2006) Petrology of forearc peridotite from the Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical characteristics of chromian spinel. Mineral Mag 70(1):15–26

    Article  Google Scholar 

  • Okino K, Kasuga S, Ohara Y (1998) A new scenario of the parece vela basin genesis. Mar Geophys Res 20(1):21–40

    Article  Google Scholar 

  • Ozawa K, Shimizu N (1995) Open-system melting in the upper mantle: constraints from the Hayachine-Miyamori ophiolite, northeastern Japan. J Geophys Res 100(B11):22315–22335

    Article  Google Scholar 

  • Pagé P, Barnes S-J (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the thetford mines ophiolite, Québec. Canada Econ Geol 104(7):997–1018

    Article  Google Scholar 

  • Pagé P, Barnes S-J, Zientek ML (2011) Formation and evolution of the chromitites of the stillwater complex: a trace element study. In: Barra F (ed) Let’s talk ore deposits: proceedings of the 11th SGA Biennial Meeting, Antofagasta, Chile. Society for Geology Applied to Mineral Deposits, pp 678–680

  • Palme H, O’Neill HSC (2003) 3.1 Cosmochemical estimates of mantle composition. Treatise Geochem 2:1–38

    Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J Petrol 39(9):1577–1618

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Article  Google Scholar 

  • Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophy Geosy. https://doi.org/10.1029/2009GC002871

    Article  Google Scholar 

  • Rosenbaum G, Giles D, Saxon M, Betts PG, Weinberg RF, Duboz C (2005) Subduction of the nazca ridge and the inca plateau: insights into the formation of ore deposits in Peru. Earth Planet Sci Lett 239(1–2):18–32

    Article  Google Scholar 

  • Royden LH, Husson L (2009) Subduction with variations in slab buoyancy: models and application to the banda and apennine systems. Subduction zone geodynamics. Springer, pp 35–45

    Chapter  Google Scholar 

  • Saboda K, Fryer P, Maekawa H (1992) Metamorphism of ultramafic clasts from conical seamount: Sites 778, 779, and 780. Proc Ocean Drill Program Sci Results 125:431–443

    Google Scholar 

  • Sato T, Kasahara J, Katao H, Tomiyama N, Mochizuki K, Koresawa S (1997) Seismic observations at the Yap Islands and the northern Yap trench. Tectonophysics 271(3–4):285–294

    Article  Google Scholar 

  • Schellart WP (2005) Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge. Earth Planet Sci Lett 231(3–4):197–219

    Article  Google Scholar 

  • Sen A, Snow J, Ohara Y, Hirauchi K, Kouketsu Y, Sanfilippo A, Basch V, Harigane Y, Fujii M, Okino K (2021) Melting and evolution of amphibole-rich back-arc abyssal peridotites at the mado megamullion Shikoku Basin. Geochem Geophy Geosy 22(12):e2021GC010013

    Article  Google Scholar 

  • Seno T, Stein S, Gripp AE (1993) A model for the motion of the Philippine sea plate consistent with NUVEL-1 and geological data. J Geophys Res 98(B10):17941–17948

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34(2):237–243

    Article  Google Scholar 

  • Snow JE, Dick HJ (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Acta 59(20):4219–4235

    Article  Google Scholar 

  • Standish J, Hart S, Blusztajn J, Dick H, Lee K (2002) Abyssal peridotite osmium isotopic compositions from cr-spinel. Geochem Geophy Geosy 3(1):1–24

    Article  Google Scholar 

  • Stern RJ, Fouch MJ, Klemperer SL (2003) An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler J, Hirschmann M (eds) Inside the subduction factory, vol 138. AGU Monograph, Washington DC, pp 175–222

    Chapter  Google Scholar 

  • Tamura A, Arai S (2006) Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90(1–2):43–56

    Article  Google Scholar 

  • Tani K, Dunkley DJ, Ohara Y (2011) Termination of backarc spreading: zircon dating of a giant oceanic core complex. Geology 39(1):47–50

    Article  Google Scholar 

  • Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic ridge. J Geophys Res 103(B5):9857–9866

    Article  Google Scholar 

  • Turner S, Bourdon B, Hawkesworth C, Evans P (2000) 226Ra–230Th evidence for multiple dehydration events, rapid melt ascent and the time scales of differentiation beneath the tonga-kermadec Isl Arc. Earth Planet Sci Lett 179(3–4):581–593

    Article  Google Scholar 

  • Van Hunen J, Van Den Berg AP, Vlaar NJ (2002) On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophysics 352(3–4):317–333

    Article  Google Scholar 

  • Wark D, Kempter K, McDowell F (1990) Evolution of waning, subduction-related magmatism, northern sierra madre occidental. Mexico Geol Soc Am Bull 102(11):1555–1564

    Article  Google Scholar 

  • Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248:193–219

    Article  Google Scholar 

  • Wei SS, Shearer PM, Lithgow-Bertelloni C, Stixrude L, Tian D (2020) Oceanic plateau of the Hawaiian mantle plume head subducted to the uppermost lower mantle. Science 370(6519):983–987

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72

    Article  Google Scholar 

  • Yao J-H, Zhu W-G, Li C, Zhong H, Bai Z-J, Ripley EM, Li C (2018) Petrogenesis and ore genesis of the Lengshuiqing magmatic sulfide deposit in southwest China: constraints from chalcophile elements (PGE, Se) and Sr-Nd-Os-S isotopes. Econ Geol 113(3):675–698

    Article  Google Scholar 

  • Yao J-H, Zhu W-G, Li C, Zhong H, Yu S, Ripley EM, Bai Z-J (2019) Olivine O isotope and trace element constraints on source variation of picrites in the emeishan flood basalt province, SW China. Lithos 338:87–98

    Article  Google Scholar 

  • Yao J, Xu J, Wu C, Zhang Z, Rosana MF, Li X, Jin Z (2023) Origin of high-Cr podiform chromitites from Kabaena Island, Southeast Sulawesi, Indonesia: constraints from mineralogy and geochemistry. Int Geol Rev. https://doi.org/10.1080/00206814.2023.2167130

    Article  Google Scholar 

  • Yuan L, Yan Q (2022) Source lithology and magmatic processes recorded in the mineral of basalts from the parece vela basin. Acta Geol Sin-Engl. https://doi.org/10.1111/1755-6724.14937

    Article  Google Scholar 

  • Zaccarini F, Garuti G, Proenza JA, Campos L, Thalhammer OA, Aiglsperger T, Lewis JF (2011) Chromite and platinum group elements mineralization in the santa elena ultramafic nappe (costa rica): geodynamic implications. Geol Acta 9(3–4):407–423

    Google Scholar 

  • Zanetti A, D’Antonio M, Spadea P, Raffone N, Vannucci R, Bruguier O (2006) Petrogenesis of mantle peridotites from the Izu-Bonin-Mariana (IBM) forearc. Ofioliti 31(2):189–206

    Google Scholar 

  • Zhang J, Zhang G (2020) Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench. Lithos 370:105616

    Article  Google Scholar 

  • Zhang G, Zhang J, Wang S, Zhao J (2020) Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chem Geol 540:119566

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Véronique Le Roux and one anonymous reviewer for their constructive comments and suggestions, and Editor Timm John for the constructive comments and efficient editorial handling. All these comments significantly improved the manuscript. Samples were collected onboard R/V “KE XUE” implementing the open research cruise NORC2020-581 supported by NSFC Shiptime Sharing Project. We thank Shuai Wang for EMPA mineral major oxide analyses. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42020302), the National Natural Science Foundation of China (91858206, 42221005, 42206051), Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (Grant No. 2022QNLM050201-3), Natural Science Foundation of Shandong Province (ZR2020MD070, ZR2022QD027), and Taishan Scholars Program of Shandong Province (tsqn201909157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Zhang.

Additional information

Communicated by Timm John.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Zhang, G., Zhang, J. et al. Petrological and geochemical constraints of mantle peridotites on the magma-starved Yap Arc formed by ultra-slow subduction. Contrib Mineral Petrol 178, 74 (2023). https://doi.org/10.1007/s00410-023-02056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-023-02056-2

Keywords

Navigation