Skip to main content
Log in

Zircon-bearing metasomatized peridotite from early Paleozoic Tongbai Orogen sub-arc mantle trapped between the North China and Yangtze cratons

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The zircon-bearing Liushuzhuang Peridotite in the Tongbai Orogen provides insights into the composition and evolution of Paleozoic sub-arc lithospheric mantle between the North China and Yangtze cratons. This orogenic peridotite is dominated by clinopyroxene-free spinel facies harzburgite to dunite. The refractory nature is indicated by high olivine Mg# (up to 92.4), elevated spinel Cr# (74–87), and low orthopyroxene Al2O3 (mostly < 1.0 wt.%). The occurrence of zircon, amphibole, phlogopite, apatite, and LREE-enriched orthopyroxene, with Raman probe analyses showing amphibole and phlogopite inclusions in zircon, testifies to extensive fluid-driven metasomatism of the mantle at ca. 420 Ma (U–Pb zircon). The high spinel TiO2 contents (0.4–1.4 wt.%), the Cl-enriched apatite, and the hydrous secondary phases indicate that the metasomatic agent was volatile- (CO2 + H2O) and TiO2-rich. The elevated oxygen fugacity (∆logfO2 (FMQ) > 2.5) coupled with high spinel Cr# of peridotites suggest that they formed within highly oxidizing supra-subduction zone environment. In-situ 87Sr/86Sri amphibole and apatite data indicate that the metasomatic fluids were slightly to moderately radiogenic (0.7032–0.7090) and therefore likely partially derived from the subducted Shangdan oceanic crust that separated the North China and Yangtze cratons. The very low 176Lu/177Hf (mostly < 0.0002) of metasomatic zircon and similar εHf(t) to Tongbai Orogen arc-related magmas implies that zircon grew during modification of sub-arc mantle. Juxtaposition with the host gneisses occurred after 410 Ma and before U–Pb closure during apatite cooling at ~ 340 Ma. The Liushuzhuang Peridotite therefore records intense metasomatism of the Paleozoic sub-arc mantle wedge prior to collision of the North China and Yangtze cratons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets analyzed in this study can be found in the supplementary material at https://doi.org/10.1007/s00410-023-02006-y.

References

  • Arai S, Yurimoto H (1994) Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Econ Geol 89(6):1279–1288

    Article  Google Scholar 

  • Ayers JC, Watson EB (1993) Rutile solubility and mobility in supercritical aqueous fluids. Contrib Miner Petrol 114(3):321–330

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Miner Petrol 107(1):27–40

    Article  Google Scholar 

  • Barrett N, Jaques AL, González-Álvarez I, Walter MJ, Pearson DG (2022) Ultra-refractory peridotites of Phanerozoic mantle origin: The Papua New Guinea ophiolite mantle tectonites. J Petrol 63(3):1–30

    Article  Google Scholar 

  • Bebout GE (2007) Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett 260(3):373–393

    Article  Google Scholar 

  • Bebout GE, Ryan JG, Leeman WP, Bebout AE (1999) Fractionation of trace elements by subduction-zone metamorphism-effect of convergent-margin thermal evolution. Earth Planet Sci Lett 171(1):63–81

    Article  Google Scholar 

  • Bebout GE, Bebout AE, Graham CM (2007) Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chem Geol 239(3–4):284–304

    Article  Google Scholar 

  • Bernstein S, Kelemen PB, Hanghøj K (2007) Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology 35(5):459–462

    Article  Google Scholar 

  • Bodinier JL, Godard M (2014) Orogenic, Ophiolitic, and Abyssal Peridotites. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, pp 103–167

    Chapter  Google Scholar 

  • Cao Y, Song SG, Su L, Jung H, Niu YL (2016) Highly refractory peridotites in Songshugou, Qinling orogen: insights into partial melting and melt/fluid–rock reactions in forearc mantle. Lithos 252:234–254

    Article  Google Scholar 

  • Cheng H, Zhang C, Vervoort JD, Li XH, Li QL, Wu YB, Zheng S (2012) Timing of eclogite facies metamorphism in the North Qinling by U-Pb and Lu–Hf geochronology. Lithos 136:46–59

    Article  Google Scholar 

  • Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal at Spectrom 17(12):1567–1574

    Article  Google Scholar 

  • Cochrane R, Spikings RA, Chew D, Wotzlaw JF, Chiaradia M, Tyrrell S, Schaltegger U, Van der Lelij R (2014) High temperature (> 350 ℃) thermochronology and mechanisms of Pb loss in apatite. Geochim Cosmochim Acta 127:39–56

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Faccini B, Grégoire M, O’Reilly SY, Powell W (2007) Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99(1–2):68–84

    Article  Google Scholar 

  • Czertowicz TA, Scott JM, Waight TE, Palin J, Van der Meer QHA, Le Roux P, Münker C, Piazolo S (2016) The anita peridotite, New zealand: ultra-depletion and subtle enrichment in sub-arc mantle. J Petrol 57(4):717–750

    Article  Google Scholar 

  • De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270(1–4):196–215

    Article  Google Scholar 

  • Diwu CR, Sun Y, Zhang H, Wang Q, Guo AL, Fan LG (2012) Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: constraints from detrital zircon U-Pb ages. J Asian Earth Sci 47:107–122

    Article  Google Scholar 

  • Dong YP, Zhou MF, Zhang GW, Zhou DW, Liu L, Zhang Q (2008) The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling orogenic belt. J Asian Earth Sci 32(5–6):325–335

    Article  Google Scholar 

  • Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J, Hauzenberger C (2011a) Tectonic evolution of the Qinling orogen, China: review and synthesis. J Asian Earth Sci 41(3):213–237

    Article  Google Scholar 

  • Dong YP, Genser J, Neubauer F, Zhang GW, Liu XM, Yang Z, Heberer B (2011b) U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane. China Gondwana Research 19(4):881–893

    Article  Google Scholar 

  • Dong YP, Sun SS, Santosh M, Zhao J, Sun JP, He DF, Shi XH, Hui B, Cheng C, Zhang GW (2021) Central China orogenic belt and amalgamation of East Asian continents. Gondwana Res 100:131–194

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3 + concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralog Mag 51(361):431–435

    Article  Google Scholar 

  • Eide EA, Liou JG (2000) High-pressure blueschists and eclogites in Hong’an: a framework for addressing the evolution of high-and ultrahigh-pressure rocks in central China. Lithos 52(1–4):1–22

    Article  Google Scholar 

  • Evans BW, Hattori K, Baronnet A (2013) Serpentinite: What, Why, Where? Elements 9(2):99–106

    Article  Google Scholar 

  • Grieco G, Ferrario A, von Quadt A, Koeppel V, Mathez EA (2001) The zircon-bearing chromitites of the phlogopite peridotite of Finero (Ivrea Zone, Southern Alps): evidence and geochronology of a metasomatized mantle slab. J Petrol 42(1):89–101

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Sv J, Van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64(1):133–147

    Article  Google Scholar 

  • Hacker BR (2008) H2O subduction beyond arcs. Geochem Geophys Geosyst 9(3):1–24

    Article  Google Scholar 

  • Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D, Shuwen D (1998) U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen. China Earth and Planetary Sci Lett 161(1–4):215–230

    Article  Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133(3–4):463–473

    Article  Google Scholar 

  • Ionov DA (2010) Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano. Kamchatka J Petrol 51(1–2):327–361

    Article  Google Scholar 

  • Ishii T, Robinson P, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In: Fryer, P., Pearce, J. A., Stokking, L. B., et al. (eds.) Proceedings of the ocean drilling program, scientific results pp. 125:445–486

  • Ishimaru S, Arai S, Ishida Y, Shirasaka M, Okrugin VM (2007) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka. J Petrol 48(2):395–433

    Article  Google Scholar 

  • Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29(3):285–302

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429

    Article  Google Scholar 

  • Katayama I, Muko A, Iizuka T, Maruyama S, Terada K, Tsutsumi Y, Sano Y, Zhang RY, Liou JG (2003) Dating of zircon from Ti-clinohumite–bearing garnet peridotite: Implication for timing of mantle metasomatism. Geology 31(8):713–716

    Article  Google Scholar 

  • Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJ (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos Trans R Soc London, Ser A 355(1723):283–318

    Article  Google Scholar 

  • Li SZ, Kusky TM, Liu XC, Zhang GW, Zhao GC, Wang L, Wang YJ (2009) Two-stage collision-related extrusion of the western Dabie HP–UHP metamorphic terranes, central China: evidence from quartz c-axis fabrics and structures. Gondwana Res 16(2):294–309

    Article  Google Scholar 

  • Li SZ, Kusky TM, Zhao GC, Liu XC, Zhang GW, Kopp H, Wang L (2010a) Two-stage Triassic exhumation of HP–UHP terranes in the western Dabie orogen of China: constraints from structural geology. Tectonophysics 490(3–4):267–293

    Article  Google Scholar 

  • Li SZ, Zhao GC, Zhang GW, Liu XC, Dong SW, Wang YJ, Liu X, Suo YH, Dai LM, Jin C (2010b) Not all folds and thrusts in the Yangtze foreland thrust belt are related to the Dabie Orogen: insights from Mesozoic deformation south of the Yangtze River. Geol J 45(5–6):650–663

    Article  Google Scholar 

  • Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC (2010c) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf–O isotopes and U-Pb age. Geostand Geoanal Res 34(2):117–134

    Article  Google Scholar 

  • Li Y, Yang JS, Dilek Y, Zhang J, Pei XZ, Chen SY, Xu XZ, Li JY (2015) Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China: record of subduction initiation and backarc basin development. Gondwana Res 27(2):733–744

    Article  Google Scholar 

  • Li HY, Chen RX, Zheng YF, Hu ZC (2016) The crust-mantle interaction in continental subduction channels: Zircon evidence from orogenic peridotite in the Sulu orogen. J Geophys Res Solid Earth 121(2):687–712

    Article  Google Scholar 

  • Liu X, Wei C, Li S, Dong S, Liu J (2004a) Thermobaric structure of a traverse across western Dabieshan: implications for collision tectonics between the Sino-Korean and Yangtze cratons. J Metamorph Geol 22(4):361–379

    Article  Google Scholar 

  • Liu XC, Jahn BM, Liu DY, Dong SW, Li SZ (2004b) SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications. Tectonophysics 394(3–4):171–192

    Article  Google Scholar 

  • Liu JB, Ye K, Sun M (2006) Exhumation P-T path of UHP eclogites in the Hong’an area, western Dabie Mountains. China Lithos 89(1–2):154–173

    Article  Google Scholar 

  • Liu XM, Gao S, Diwu CR, Ling WL (2008) Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. Am J Sci 308(4):421–468

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51(1–2):537–571

    Article  Google Scholar 

  • Liu XC, Jahn BM, Hu J, Li SZ, Liu X, Song B (2011) Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbai orogen, central China: implications for multiple accretion/collision processes prior to terminal continental collision. J Metamorph Geol 29(9):979–1002

    Article  Google Scholar 

  • Liu XC, Li SZ, Jahn BM (2015) Tectonic evolution of the Tongbai-Hong’an orogen in central China: from oceanic subduction/accretion to continent-continent collision. Sci China Earth Sci 58(9):1477–1496

    Article  Google Scholar 

  • Ludwig KR (2012) User’s Manual for Isoplot Version 3.75–4.15: A Geochronological Toolkit for Microsoft Excel. Special Publication 5. Berkley Geochronological Centre

  • Marchesi C, Garrido CJ, Bosch D, Bodinier JL, Gervilla F, Hidas K (2013) Mantle refertilization by melts of crustal-derived garnet pyroxenite: evidence from the Ronda peridotite massif, southern Spain. Earth Planet Sci Lett 362:66–75

    Article  Google Scholar 

  • Meng QR, Zhang GW (2000) Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics 323(3–4):183–196

    Article  Google Scholar 

  • Mitchell AL, Grove TL (2015) Melting the hydrous, subarc mantle: the origin of primitive andesites. Contrib Miner Petrol 170(2):1–23

    Article  Google Scholar 

  • Morishita T, Hattori KH, Terada K, Matsumoto T, Yamamoto K, Takebe M, Ishida Y, Tamura A, Arai S (2008) Geochemistry of apatite-rich layers in the Finero phlogopite–peridotite massif (Italian Western Alps) and ion microprobe dating of apatite. Chem Geol 251(1–4):99–111

    Article  Google Scholar 

  • Nie H, Yang JZ, Zhou GY, Liu CZ, Zheng JP, Zhang WX, Zhao YJ, Wang H, Wu YB (2017) Geochemical and Re–Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China. Lithos 292:307–319

    Article  Google Scholar 

  • Niu PP, Jiang SY (2020) Petrogenesis of the Late Mesozoic Qijinfeng Granite Complex in the Tongbai orogen: geochronological, geochemical and Sr-Nd-Pb-Hf isotope evidence. Lithos 356–357:105290

    Article  Google Scholar 

  • O’Neill HSC, Wall VJ (1987) The Olivine—Orthopyroxene—Spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s Upper Mantle. J Petrol 28(6):1169–1191

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53(3–4):217–232

    Article  Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160(4):409–423

    Article  Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J Petrol 39(9):1577–1618

    Article  Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contrib Miner Petrol 139(1):36–53

    Article  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2014) 3.5 - Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry (Second Edition). Elsevier, Oxford, pp 169–253

    Chapter  Google Scholar 

  • Pearson DG, Scott JM, Liu JG, Schaeffer A, Wang LHL, van Hunen J, Szilas K, Chacko T, Kelemen PB (2021) Deep continental roots and cratons. Nature 596(7871):199–210

    Article  Google Scholar 

  • Raffone N, Le Fèvre B, Ottolini L, Vannucci R, Zanetti A (2006) Light-lithophile element metasomatism of Finero peridotite (W Alps): a secondary-ion mass spectrometry study. Microchim Acta 155(1):251–255

    Article  Google Scholar 

  • Rapp JF, Klemme S, Butler IB, Harley SL (2010) Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation. Geology 38(4):323–326

    Article  Google Scholar 

  • Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, McWilliams MO, Ireland T, Dong SW, Hu JM (2003) Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics 366(1):1–53

    Article  Google Scholar 

  • Ratschbacher L, Franz L, Enkelmann E, Jonckheere R, Pörschke A, Hacker BR, Dong S, Zhang Y, Hacker BR, McClelland WC, Liou JG (2006) The Sino-Korean–Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra)high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. Ultrahigh-pressure metamorphism. Geological Society of America Special, America, Deep continental subduction, pp 45–75

    Google Scholar 

  • Ringwood AE (1974) The petrological evolution of island arc systems: twenty-seventh William Smith Lecture. J Geol Soc 130(3):183–204

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05B07

  • Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293(5530):683–687

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163(1–4):361–379

    Article  Google Scholar 

  • Schoene B, Bowring SA (2007) Determining accurate temperature–time paths from U-Pb thermochronology: an example from the Kaapvaal craton, southern Africa. Geochim Cosmochim Acta 71(1):165–185

    Article  Google Scholar 

  • Scott JM, Waight TE, Van der Meer QHA, Palin JM, Cooper AF, Münker C (2014) Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism. Geochem Geophys Geosyst 15(9):3477–3501

    Article  Google Scholar 

  • Scott JM, Brenna M, Crase JA, Waight TE, van der Meer QHA, Cooper AF, Michael Palin J, Le Roux P, Münker C (2016a) Peridotitic lithosphere metasomatized by volatile-bearing melts, and its association with intraplate alkaline HIMU-like magmatism. J Petrol 57(10):2053–2078

    Article  Google Scholar 

  • Scott JM, Liu JG, Pearson DG, Waight TE (2016b) Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites. Chem Geol 441:280–291

    Article  Google Scholar 

  • Scott JM, Liu JG, Pearson DG, Harris GA, Czertowicz TA, Woodland SJ, Riches AJV, Luth RW (2019) Continent stabilisation by lateral accretion of subduction zone-processed depleted mantle residues; insights from Zealandia. Earth Planet Sci Lett 507:175–186

    Article  Google Scholar 

  • Scott JM, Pearson DG, Liu J, Auer A, Cooper AF, Li D, Palmer MC, Read SE, Reid MR, Woodland SJ (2021) Osmium isotopes in peridotite xenoliths reveal major mid-Proterozoic lithosphere formation under the Transantarctic Mountains. Geochim Cosmochim Acta 312:25–43

    Article  Google Scholar 

  • Staudigel H, Davies GR, Hart SR, Marchant KM, Smith BM (1995) Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites417/418. Earth Planet Sci Lett 130(1–4):169–185

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys. https://doi.org/10.1029/2001RG000108

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Soc, London, Special Public 42(1):313–345

    Article  Google Scholar 

  • Sun WD, Li SG, Sun Y, Zhang GW, Zhang ZQ (1996) Chronology and geochemistry of a lava pillow in the Erlangping Group at Xixia in the northern Qinling Mountains. Geol Rev 42(6):144–153 (In Chinese with English abstract)

  • Sun SS, Dong YP, Sun YL, Cheng C, Huang XX, Liu XM (2019) Re-Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massif in the Qinling Orogenic Belt, China. Gondwana Res 70:71–87

    Article  Google Scholar 

  • Tong XR, Liu YS, Hu ZC, Chen HH, Zhou L, Hu QH, Xu R, Deng L, Chen CF, Yang L (2016) Accurate determination of Sr isotopic compositions in clinopyroxene and silicate glasses by LA-MC-ICP-MS. Geostand Geoanal Res 40(1):85–99

    Article  Google Scholar 

  • Wang H, Wu YB, Gao S, Liu XC, Gong HJ, Li QL, Li XH, Yuan HL (2011a) Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks. J Metamorph Geol 29(9):1019–1031

    Article  Google Scholar 

  • Wang H, Wu YB, Gao S, Zhang HF, Liu XC, Gong HJ, Peng M, Wang J, Yuan HL (2011b) Silurian granulite-facies metamorphism, and coeval magmatism and crustal growth in the Tongbai orogen, central China. Lithos 125(1):249–271

    Article  Google Scholar 

  • Wang H, Wu YB, Gao S, Liu XC, Liu Q, Qin ZW, Xie SW, Zhou L, Yang SH (2013a) Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambr Res 230:13–30

    Article  Google Scholar 

  • Wang H, Wu YB, Qin ZW, Zhu LQ, Liu Q, Liu XC, Gao S, Wijbrans JR, Zhou L, Gong HJ (2013b) Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogen, central China: implications for the geodynamic evolution of the North Qinling arc–back-arc system. Lithos 179:1–15

    Article  Google Scholar 

  • Wang H, Wu YB, Li CR, Zhao TY, Qin ZW, Zhu LQ, Gao S, Zheng JP, Liu XM, Zhou L (2014) Recycling of sediment into the mantle source of K-rich mafic rocks: Sr–Nd–Hf–O isotopic evidence from the Fushui complex in the Qinling orogen. Contrib Miner Petrol 168(4):1–19

    Article  Google Scholar 

  • Wang H, Wu YB, Yang JH, Qin ZW, Duan RC, Zhou L, Yang SH (2017) Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr–Nd–Hf–O isotopic study from the Paleozoic Tongbai orogen, central China. Lithos 282:298–315

    Article  Google Scholar 

  • Wang TT, Zheng JP, Scott JM, Ping XQ, Ma Q, Xiong Q, Zhang S (2022) Coronitic and symplectitic textures in meta-troctolites reveal the transition from magmatism to granulite-facies metamorphism in the Early Paleozoic Tongbai Orogen, central China. J Petrol. https://doi.org/10.1093/petrology/egac060

    Article  Google Scholar 

  • Wei CJ, Li YJ, Yu Y, Zhang JS (2010) Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the Western Dabieshan Terrane, Central China. J Metamorph Geol 28(6):647–666

    Article  Google Scholar 

  • Wu YB, Zheng YF (2013) Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong’an–Dabie–Sulu orogenic belt in central China. Gondwana Res 23(4):1402–1428

    Article  Google Scholar 

  • Xiang H, Zhang L, Zhong ZQ, Santosh M, Zhou HW, Zhang HF, Zheng JP, Zheng S (2012) Ultrahigh-temperature metamorphism and anticlockwise P-T–t path of Paleozoic granulites from north Qinling-Tongbai orogen. Central China Gondwana Research 21(2):559–576

    Article  Google Scholar 

  • Yang L, Chen FK, Yang YZ, Li SQ, Zhu XY (2010) Zircon U-Pb ages of the Qinling Group in Danfeng area: recording Mesoproterozoic and Neoproterozoic magmatism and Early Paleozoic metamorphism in the North Qinling terrain. Acta Petrologica Sinica 26(5):1589–1603

    Google Scholar 

  • Yang YH, Wu FY, Yang JH, Chew DM, Xie LW, Chu ZY, Zhang YB, Huang C (2014) Sr and Nd isotopic compositions of apatite reference materials used in U-Th–Pb geochronology. Chem Geol 385:35–55

    Article  Google Scholar 

  • Yu SY, Xu YG, Ma JL, Zheng YF, Kuang YS, Hong LB, Ge WC, Tong LX (2010) Remnants of oceanic lower crust in the subcontinental lithospheric mantle: trace element and Sr–Nd–O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China. Earth Planet Sci Lett 297(3–4):413–422

    Article  Google Scholar 

  • Yu H, Zhang HF, Santosh M (2017) Mylonitized peridotites of Songshugou in the Qinling orogen, central China: a fragment of fossil oceanic lithosphere mantle. Gondwana Res 52:1–17

    Article  Google Scholar 

  • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Miner Petrol 134(2):107–122

    Article  Google Scholar 

  • Zanetti A, Giovanardi T, Langone A, Tiepolo M, Wu FY, Dallai L, Mazzucchelli M (2016) Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea–Verbano Zone, Western Alps) and geodynamic consequences. Lithos 262:58–74

    Article  Google Scholar 

  • Zhang RY, Yang JS, Wooden JL, Liou JG, Li TF (2005) U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth Planet Sci Lett 237(3–4):729–743

    Article  Google Scholar 

  • Zhang ZM, Dong X, Liou JG, Liu F, Wang W, Yui F (2011) Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. J Metamorph Geol 29(9):917–937

    Article  Google Scholar 

  • Zhang HF, Yu H, Zhou DW, Zhang J, Dong YP, Zhang GW (2015) The meta-gabbroic complex of Fushui in north Qinling orogen: a case of syn-subduction mafic magmatism. Gondwana Res 28(1):262–275

    Article  Google Scholar 

  • Zhang W, Hu ZC, Liu YS (2020) Iso-Compass: new freeware software for isotopic data reduction of LA-MC-ICP-MS. J Anal at Spectrom 35(6):1087–1096

    Article  Google Scholar 

  • Zhao L, Li TS, Peng P, Guo JH, Wang W, Wang HZ, Santosh M, Zhai MG (2015) Anatomy of zircon growth in high pressure granulites: SIMS U-Pb geochronology and Lu–Hf isotopes from the Jiaobei Terrane, eastern North China Craton. Gondwana Res 28(4):1373–1390

    Article  Google Scholar 

  • Zhao Y, Zheng JP, Xiong Q (2021) Prolonged slab-derived silicate and carbonate metasomatism of a cratonic mantle wedge (Maowu ultramafic body, China). J Petrol. https://doi.org/10.1093/petrology/egab081

    Article  Google Scholar 

  • Zheng YF, Fu B, Gong B, Li L (2003) Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Sci Rev 62(1–2):105–161

    Article  Google Scholar 

  • Zheng YF, Wu YB, Chen FK, Gong B, Li L, Zhao ZF (2004) Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta 68(20):4145–4165

  • Zheng JP, Griffin WL, O’Reilly SY, Zhang M, Pearson N (2006) Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision. Earth Planet Sci Lett 247(1–2):130–142

    Article  Google Scholar 

  • Zheng F, Dai LQ, Zhao ZF, Zheng YF, Xu Z (2019a) Recycling of Paleo-oceanic crust: Geochemical evidence from Early Paleozoic mafic igneous rocks in the Tongbai orogen, Central China. Lithos 328:312–327

    Article  Google Scholar 

  • Zheng JP, Xiong Q, Zhao Y, Li WB (2019b) Subduction-zone peridotites and their records of crust-mantle interaction. Sci China Earth Sci 62(7):1033–1052

    Article  Google Scholar 

  • Zheng F, Dai LQ, Zhao ZF, Zheng YF, Ma LT, Fang W (2020) Syn-exhumation magmatism during continental collision: Geochemical evidence from the early Paleozoic Fushui mafic rocks in the Qinling orogen. Central China Lithos 352:105318

    Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Li ZJ (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37(1):3–21

    Article  Google Scholar 

  • Zhuang YD, Wu YB, Zhang WX, Hu P, He Y (2022) Generation of continental crust by remelting of enriched oceanic crust in accretionary orogen: Geochemical evidence of granitoids in the Tongbai Orogen. Central China Lithos 420:106718

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (41930215). Leitao Cao are thanked for the help with sample collection. Hongkun Dai is also thanked for the discussions. We also acknowledge editor Timothy L. Grove for handing this manuscript and his constructive comments.

Funding

National Natural Science Foundation of China, 41930215, Jianping Zheng.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Zheng or James M. Scott.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56870 KB)

Supplementary file2 (XLSX 298 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zheng, J., Scott, J.M. et al. Zircon-bearing metasomatized peridotite from early Paleozoic Tongbai Orogen sub-arc mantle trapped between the North China and Yangtze cratons. Contrib Mineral Petrol 178, 24 (2023). https://doi.org/10.1007/s00410-023-02006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-023-02006-y

Keywords

Navigation