Skip to main content

Advertisement

Log in

Hydrothermal metasomatism and solid-phase transfer in petrogenesis of listvenite: the Meso-Tethyan ophiolite, central Tibet, China

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In this paper, we present mineralogical, whole-rock geochemical, Sr and Pb isotopic, and zircon trace elemental and U–Pb geochronological data for the newly-discovered Pengco listvenite in central Tibet, in an attempt to probe the petrogenesis of listvenite and the tectonic environment. The listvenite is composed of magnesite, quartz and minor dolomite and Cr-spinel. Chemistry of abundant protogenetic Cr-spinel in the Pengco listvenite as well as the whole-rock Cr and Ni concentrations and low rare-earth element contents indicates the harzburgite protolith. Addition of Ca and K and redistribution of Si at sample scale suggest that the formation of Pengco listvenite was not an isochemical process. Serpentinization could partly accounts for the enrichments in some fluid mobile elements before listvenitization. The εHf(t) values of xenocrystic zircons in the Pengco listvenite are dominantly negative, suggesting a continental crustal source. The zircon age spectra and high whole-rock initial 87Sr/86Sr values (0.7094–0.7107, and one up to 0.7193) and high 207Pb/204Pb (15.750–15.759), 208Pb/204Pb (39.145–39.215) and 206Pb/204Pb (18.542–18.567) of the Pengco listvenite are similar to those of the Qiangtang continental sediments/upper crust, indicating the terrigenous source of reactant fluids and fluid-assisted solid-state transfer during the formation of listvenite. The Pengco listvenite is likely formed in the forearc extensional environment of the Bangong Meso-Tethyan ocean during the Late Jurassic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statements

The data that support the findings of this study are openly available within the article and its supplementary materials.

References

  • Aitchison JC, Cluzel D, Ireland TR, Zhou RJ, Lian DY, Patias D, Yan Z, Yang JS (2022) Solid-phase transfer into the forearc mantle wedge: Rutile and zircon xenocrysts fingerprint subducting sources. Earth Planet Sci Lett 577:117251

    Article  Google Scholar 

  • Allègre CJ, Lewin E (1989) Chemical structure and history of the Earth: evidence from global non-linear inversion of isotopic data in a three-box model. Earth Planet Sci Lett 96(1–2):61–88

    Article  Google Scholar 

  • Andersen T (2002) Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol 192(1–2):59–79

    Article  Google Scholar 

  • Andersen T, Elburg MA, Magwaza BN (2019) Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction. Earth-Sci Rev 197:102899

    Article  Google Scholar 

  • Asmerom Y, Jacobsen SB (1993) The Pb isotopic evolution of the Earth: inferences from river water suspended loads. Earth Planet Sci Lett 115(1–4):245–256

    Article  Google Scholar 

  • Barra F, Gervilla F, Hernández E, Reich M, Padrón-Navarta JA, González-Jiménez JM (2014) Alteration patterns of chromian spinels from La Cabaña peridotite, south-central Chile. Mineral Petrol 108(6):819–836

    Article  Google Scholar 

  • Beinlich A, Plümper O, Boter E, Müller IA, Kourim F, Ziegler M, Harigane Y, Lafay R, Kelemen PB, Team ODPS (2020) Ultramafic rock carbonation Constraints from listvenite core BT1B oman drilling project. J Geophys Res-Solid Earth. https://doi.org/10.1029/2019JB019060

    Article  Google Scholar 

  • Boskabadi A, Pitcairn IK, Leybourne MI, Teagle DAH, Cooper MJ, Hadizadeh H, Nasiri Bezenjani R, Monazzami Bagherzadeh R (2020) Carbonation of ophiolitic ultramafic rocks: Listvenite formation in the Late Cretaceous ophiolites of eastern Iran. Lithos 352–353:105307

    Article  Google Scholar 

  • Buckley H, Woolley A (1990) Carbonates of the magnesite–siderite series from four carbonatite complexes. Mineral Mag 54(376):413–418

    Article  Google Scholar 

  • Chen WY, Hu XC, Zhong Y, Fu YB, Li F, Wang YG (2018) Comment on Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. J Geophys Res Solid Earth. 123(9):7338–7342

    Article  Google Scholar 

  • Clift PD, Van Long H, Hinton R, Ellam RM, Hannigan R, Tan MT, Blusztajn J, Duc NA (2008) Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments. Geochem Geophys Geosyst 9(4):213

    Article  Google Scholar 

  • de Obeso JC, Kelemen PB, Leong JM, Menzel MD, Manning CE, Godard M, Cai Y, Bolge L, Party ODPPS (2022) Deep sourced fluids for peridotite carbonation in the shallow mantle wedge of a fossil subduction zone: Sr and C isotope profiles of OmanDP Hole BT1B. J Geophys Res-Solid Earth. https://doi.org/10.1029/2021JB022704

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (2013) Rock-forming minerals (3rd edition). Berforts Information Press, Stevenage, Hertfordshire, UK, The Mineralogical Society

    Book  Google Scholar 

  • Dick HJ, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86(1):54–76

    Article  Google Scholar 

  • Elthon D (1992) Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. J Geophys Res Solid Earth 97(B6):9015–9025

    Article  Google Scholar 

  • Emam A, Zoheir B (2013) Au and Cr mobilization through metasomatism: Microchemical evidence from ore-bearing listvenite, South Eastern Desert of Egypt. J Geochem Explor 125:34–45

    Article  Google Scholar 

  • Falk ES, Kelemen PB (2015) Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement. Geochim Cosmochim Acta 160:70–90

    Article  Google Scholar 

  • Fryer P (2012) Serpentinite mud volcanism: observations, processes, and implications. Annu Rev Mar Sci 4:345–373

    Article  Google Scholar 

  • Fryer P, Wheat CG, Williams T, Kelley C, Johnson K, Ryan J, Kurz W, Shervais J, Albers E, Bekins B (2020) Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life. Philos Trans R Soc A-Math Phys Eng Sci A 378(2165):20180425

    Article  Google Scholar 

  • Gahlan HA, Azer MK, Asimow PD, Al-Kahtany KM (2020) Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield. Saudi Arabia Lithos 372–373:105679

    Google Scholar 

  • Geisler T, Rashwan A, Rahn M, Poller U, Zwingmann H, Pidgeon R, Schleicher H, Tomaschek F (2003) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert. Egypt Mineral Mag 67(3):485–508

    Article  Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249(1–2):47–61

    Article  Google Scholar 

  • Godard M, Lagabrielle Y, Alard O, Harvey J (2008) Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge. Earth Planet Sci Lett 267(3–4):410–425

    Article  Google Scholar 

  • Godard M, Carter E, Decrausaz T, Lafay R, Bennett E, Kourim F, de Obeso JC, Michibayashi K, Harris M, Coggon J (2021) geochemical profiles across the listvenite-metamorphic transition in the basal megathrust of the semail ophiolite: results from drilling at omanDP Hole BT1B. J Geophys Res-Solid Earth. 126(12):733

    Article  Google Scholar 

  • Goolaerts A, Mattielli N, De Jong J, Weis D, Scoates JS (2004) Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chem Geol 206(1–2):1–9

    Article  Google Scholar 

  • Halls C, Zhao R (1995) Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun. Co Mayo. Republic of Ireland. 30(3):303–313

    Google Scholar 

  • Hansen LD, Dipple GM, Gordon TM, Kellett DA (2005) Carbonated serpentinite (listwanite) at Atlin, British Columbia: A geological analogue to carbon dioxide sequestration. Can Mineral 43:225–239

    Article  Google Scholar 

  • Hemming S, McLennan S (2001) Pb isotope compositions of modern deep sea turbidites. Earth Planet Sci Lett 184(2):489–503

    Article  Google Scholar 

  • Hermann J, Rubatto A, Rommsdorff V (2006) Sub-solidus Oligocene zircon formation in garnet peridotite during fast decompression and fluid infiltration (Duria, Central Alps). Mineral Petrol 88(1–2):181–206

    Article  Google Scholar 

  • Hinsken T, Bröcker M, Strauss H, Bulle F (2017) Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece. Lithos 282–283:281–297

    Article  Google Scholar 

  • Hofmann A (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise Geochem 2:568

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Zircon 53:27–62

    Article  Google Scholar 

  • Hou K, Li Y, Zou T, Qu X, Shi Y, Xie G (2007) Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol Sin 23(10):2595–2604

    Google Scholar 

  • Huang QT, Li JF, Cai ZR, Xia LZ, Yuan YJ, Liu HC, Xia B (2015) Geochemistry, geochronology, Sr-Nd isotopic compositions of Jiang Tso ophiolite in the middle segment of the Bangong-Nujiang suture zone and their geological significance. Acta Geol Sin-Engl Ed 89(2):389–401

    Article  Google Scholar 

  • Huang TT, Xu JF, Chen JL, Wu JB, Zeng YC (2017) Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean: insights from detrital zircons. Int Geol Rev 59(2):166–184

    Article  Google Scholar 

  • Ishii T (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc Leg 125. Proceeding of the ocean drilling program scientific results. Ocean Drilling Program, UK

    Google Scholar 

  • Ishikawa A, Maruyama S, Komiya T (2004) Layered lithospheric mantle beneath the Ontong Java Plateau: implications from xenoliths in alnöite, Malaita. Solomon Islands J Petrol 45(10):2011–2044

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211(1–2):47–69

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671

    Article  Google Scholar 

  • Katayama I, Muko A, Iizuka T, Maruyama S, Terada K, Tsutsumi Y, Sano Y, Zhang RY, Liou JG (2003) Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism. Geology 31(8):713–716

    Article  Google Scholar 

  • Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO2 storage. Proc Natl Acad Sci USA 105(45):17295–17300

    Article  Google Scholar 

  • Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J (2011) Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage. Annu Rev Earth Planet Sci 39(1):545–576

    Article  Google Scholar 

  • Kelemen PB, Carlos de Obeso J, Leong JA, Godard M, Okazaki K, Kotowski AJ, Manning CE, Ellison ET, Menzel MD, Urai JL (2022) Listvenite formation during mass transfer into the leading edge of the mantle wedge Initial results from Oman Drilling Project Hole BT1B. J Geophys Res-Solid Earth. 127(2):352

    Article  Google Scholar 

  • Khedr MZ, Arai S (2010) Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: evidence from the Happo-O’ne metaperidotites (Japan). Contrib Mineral Petrol 159(2):137–157

    Article  Google Scholar 

  • Klein F, Garrido CJ (2011) Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos 126(3–4):147–160

    Article  Google Scholar 

  • Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches A (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259(3–4):599–612

    Article  Google Scholar 

  • Lu Y, Yang J, Dong Y, Xiong F, Chen X, Li G, Bo R (2019) The MOR-type lherzolites in Peng Co ophiolite in the middle segment of the Bangong-Nujiang suture in Tibet. Acta Geol Sin 93(10):2575–2597

    Google Scholar 

  • Ludwig K (2003) User’s Manual for Isoplot/Ex Version 3.00: a Geochronological Toolkit for Microsoft Excel. (Special Publication). Geochronology Center, Berkeley. 4:1–71

    Google Scholar 

  • Menzel MD, Garrido CJ, López Sánchez-Vizcaíno V, Marchesi C, Hidas K, Escayola MP, Delgado Huertas A (2018) Carbonation of mantle peridotite by CO2-rich fluids: the formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada). Lithos 323:238–261

    Article  Google Scholar 

  • Menzel MD, Urai JL, Obeso JC, Kotowski A, Manning CE, Kelemen PB, Kettermann M, Jesus AP, Harigane Y (2020) Brittle Deformation of Carbonated Peridotite—Insights From Listvenites of the Samail Ophiolite (Oman Drilling Project Hole BT1B). J Geophys Res-Solid Earth. 125(10):199

    Article  Google Scholar 

  • Menzel MD, Urai JL, Ukar E, Hirth G, Schwedt A, Kovacs A, Kibkalo L, Kelemen PB (2022) Ductile deformation during carbonation of serpentinized peridotite. Nat Commun 13(1):1049

    Article  Google Scholar 

  • Moussa HE, Azer MK, Abou El Maaty MA, Maurice AE, Yanni NN, Akarish AIM, Elnazer AA, Elsagheer MA (2021) Carbonation of Neoproterozoic mantle section and formation of gold-bearing listvenite in the Northern Nubian Shield. Lithos 406:106525

    Article  Google Scholar 

  • Nasir S, Al Sayigh AR, Al Harthy A, Al-Khirbash S, Al-Jaaidi O, Musllam A, Al-Mishwat A, Al-Bu’saidi S (2007) Mineralogical and geochemical characterization of listwaenite from the Semail Ophiolite. Oman Geochemistry 67(3):213–228

    Article  Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11(3):321

    Article  Google Scholar 

  • Pearce JA, Wanming D (1988) The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philos Trans R Soc A-Math Phys Eng Sci 327(1594):215–238

    Google Scholar 

  • Peng W, Zhang L, Menzel MD, Vitale Brovarone A, Tumiati S, Shen T, Hu H (2020) Multistage CO2 sequestration in the subduction zone: Insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China. Geochim Cosmochim Acta 270:218–243

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3–4):325–394

    Article  Google Scholar 

  • Qiu T, Zhu Y (2018) Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry. Lithos 302–303:427–446

    Article  Google Scholar 

  • Robinson PT, Trumbull RB, Schmitt A, Yang JS, Li JW, Zhou MF, Erzinger J, Dare S, Xiong F (2015) The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res 27(2):486–506

    Article  Google Scholar 

  • Sánchez-Vizcaíno VL, Rubatto D, Gómez-Pugnaire MT, Trommsdorff V, Müntener O (2001) Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado-Filábride Complex. SE Spain Terr Nova 13(5):327–332

    Article  Google Scholar 

  • Scharf A, Bailey CM, Bolhar R, Mattern F, Ring U (2022) Post-obduction listwaenite genesis in the Oman Mountains inferred from structural analysis and U-Pb carbonate dating. Earth Planet Sci Lett 595:117756

    Article  Google Scholar 

  • Sieber MJ, Hermann J, Yaxley G (2018) An experimental investigation of C-O–H fluid-driven carbonation of serpentinites under forearc conditions. Earth Planet Sci Lett 496:178–188

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society 42(1):313–345

    Article  Google Scholar 

  • Takehara M, Horie K, Hokada T, Kiyokawa S (2018) New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth Gabbro. Chem Geol 484:168–178

    Article  Google Scholar 

  • Tang Y, Zhai Q, Hu P, Xiao X, Wang H, Wang W, Zhu Z, Wu H (2019) Jurassic high-Mg andesitic rocks in the middle part of the Bangong-Nujiang suture zone, Tibet: New constraints for the tectonic evolution of the Meso-Tethys Ocean. Acta Petrol Sin 35(10):3097–3114

    Article  Google Scholar 

  • Tsikouras B, Lai CK, Ifandi E, Norazme NA, Teo CH, Xia XP (2021) New zircon radiometric U/Pb ages and Lu-Hf isotopic data from the ultramafic-mafic sequences of Ranau and Telupid (Sabah, east Malaysia): Time to reconsider the geological evolution of Southeast Asia? Geology 49(11):E542–E542

    Article  Google Scholar 

  • Wang X, Xia B, Liu W, Zhong Y, Hu X, Guan Y, Huang W, Yin Z (2018) Geochronology, geochemistry and petrogenesis of the Pungco ophiolite. Tibet Geotectonica Et Metallogenia 42(3):550–569

    Google Scholar 

  • Weis D, Kieffer B, Maerschalk C, Barling J, de Jong J, Williams GA, Hanano D, Pretorius W, Mattielli N, Scoates JS, Goolaerts A, Friedman RM, Mahoney JB (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem Geophys Geosyst 7(8):333

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Fy C, Griffin W, Meier M, Fv O, Av Q, Roddick J, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23

    Article  Google Scholar 

  • Yan LL, Zhang KJ (2020) Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: A case study of the Bangong Meso-Tethys, central Tibet, western China. Gondwana Res 79:110–124

    Article  Google Scholar 

  • Yan LL (2019) Evolution of the central Tibetan Meso-Tethyan oceanic plateaus: A case study of the ophiolites in the lake area, northern Tibet. Dissertation, University of Chinese Academy of Sciences

  • Yu C, Yang Z, Zhou L, Zhang L, Li Z, Zhao M, Zhang J, Chen W, Suo M (2019) Impact of laser focus on accuracy of U-Pb dating of zircons by LA-ICPMS. Mineral Deposits 38(1):21–28

    Google Scholar 

  • Zeng YC, Chen JL, Xu JF, Wang BD, Huang F (2016) Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet. Geochem Geophys Geosyst 17(12):4859–4877

    Article  Google Scholar 

  • Zhang KJ, Zhang YX, Tang XC, Xia B (2012) Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Sci Rev 114(3–4):236–249

    Article  Google Scholar 

  • Zhang KJ, Xia B, Zhang YX, Liu WL, Zeng L, Li JF, Xu LF (2014a) Central Tibetan Meso-Tethyan oceanic plateau. Lithos 210:278–288

    Article  Google Scholar 

  • Zhang ZJ, Tyrrell S, Li CA, Daly JS, Sun XL, Li QW (2014b) Pb isotope compositions of detrital K-feldspar grains in the upper-middle Yangtze River system: Implications for sediment provenance and drainage evolution. Geochem Geophys Geosyst 15(7):2765–2779

    Article  Google Scholar 

  • Zhang WQ, Liu CZ, Liu T, Zhang C, Zhang ZY (2021) Subduction initiation triggered by accretion of a Jurassic oceanic plateau along the Bangong-Nujiang Suture in central Tibet. Terr Nova 33(2):150–158

    Article  Google Scholar 

  • Zhang WQ, Liu CZ, Mitchell RN, Liu T, Zhang C, Zhang ZY (2022) Extensive melting of ancient depleted oceanic mantle evidenced by decoupled Hf-Nd isotopes in the lowermost oceanic crust. Lithos 418:106684

    Article  Google Scholar 

  • Zhong Y, Liu WL, Xia B, Liu JN, Guan Y, Yin ZX, Huang QT (2017) Geochemistry and geochronology of the Mesozoic Lanong ophiolitic melange, northern Tibet: Implications for petrogenesis and tectonic evolution. Lithos 292:111–131

    Article  Google Scholar 

  • Zi JW, Rasmussen B, Muhling JR, Fletcher IR (2022) In situ U-Pb and geochemical evidence for ancient Pb-loss during hydrothermal alteration producing apparent young concordant zircon dates in older tuffs. Geochim Cosmochim Acta 320:324–338

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (grant 42272254) and the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (grant 2019QZKK0703-02). We are grateful to Dr. Wei Chen for assistance in the fieldwork, and to the associate editor for kind editorial handling and English polishing on the manuscript. Constructive and thoughtful review comments from the AE, Prof. Juan Carlos de Obeso, and two anonymous reviewers are greatly acknowledged, which have helped to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Jun Zhang.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

410_2022_1988_MOESM1_ESM.xlsx

Supplementary Table S1. Mineral assemblages of the Pengco listvenite. Table S2. Whole-rock major and trace element compositions of the Pengco listvenite. Table S3. Representative electron probe analyses of spinel, magnesite and dolomite in the Pengco listvenite. Table S4. U–Pb isotopes and ages of the zircons from the Pengco listvenite. Table S5. Hf isotope compositions of the zircons from the Pengco listvenite. Table S6. Trace elements of the zircons from the Pengco listvenite. Table S7. Whole-rock Sr and Pb isotope compositions of the Pengco listvenites (XLSX 59 KB)

410_2022_1988_MOESM2_ESM.tif

Supplementary Fig. S1. BSE imagines showing the fractured Cr-spinel (a, b), and sulfides of Ni (c) and Pb (d) in the Pengco listvenite (TIF 11184 KB)

410_2022_1988_MOESM3_ESM.tif

Supplementary Fig. S2. Ternary diagrams showing the compositions of dolomite and magnesite in the Pengco listvenite (TIF 5820 KB)

Supplementary Fig. S3. Representative CL images of analyzed zircons in the Pengco listvenite (TIF 6407 KB)

410_2022_1988_MOESM5_ESM.tif

Supplementary Fig. S4. SEM X-ray mappings showing that all Mg were distributed into carbonate minerals and all Si in quartz (TIF 17431 KB)

Supplementary Fig. S5. (a) zircon εHf(t) vs. U–Pb ages for the Pengco listvenite (TIF 5315 KB)

410_2022_1988_MOESM7_ESM.tif

Supplementary Fig. S6. Chondrite-normalized REE pattern of the late Cretaceous zircons in the Pengco listvenite (TIF 5332 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Zhang, KJ. & Yan, LL. Hydrothermal metasomatism and solid-phase transfer in petrogenesis of listvenite: the Meso-Tethyan ophiolite, central Tibet, China. Contrib Mineral Petrol 178, 4 (2023). https://doi.org/10.1007/s00410-022-01988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01988-5

Keywords

Navigation