Abstract
The Morro do Onça suite is a package of ultramafic rocks in the southern São Francisco Craton, Brazil. Owing to the complete alteration of primary silicate minerals, the Morro do Onça suite has been the subject of diverging interpretations, including: part of a retrogressed eclogite-facies Paleoproterozoic ophiolite/accretionary wedge or an Archean komatiite flow(s). In this paper, we utilize spinel-group mineral chemistry—alongside field mapping, petrography, silicate mineral chemistry and bulk-rock geochemistry—to decipher the magmatic and metamorphic evolution of the Morro do Onça suite. A komatiite origin is supported by the identification of spinifex-textured layers, as well as primary spinel-group mineral compositions (mean Cr-number = 79; mean TiO2 = 0.3 wt%) and chondrite-normalized bulk-rock rare-earth element values ([Sm–Lu]N = 1.2–5.1). Metamorphism reached mid/upper amphibolite-facies and was likely responsible for Al mobility on mineral and bulk-rock scales, demonstrating that the bulk-rock Al/Ti proxy commonly used to classify komatiites is susceptible to alteration. Thus, the Morro do Onça komatiites record variable bulk-rock Al/Ti values (17–47) that overlap with both Munro- (Al/Ti = 22) and Weltevreden-type (Al/Ti = 30) komatiites. Based on immobile trace-element ratios ([Gd/Lu]N = 0.6–2.0) and primary spinel-group mineral compositions, we classify the Morro do Onça komatiites as Weltevreden-type. Mesoarchean komatiites related to mantle plume-magmatism are now recognized throughout the southern São Francisco Craton, potentially suggesting that its precursor lithosphere was continuous during this Era.

Modified from Silva et al. (2020)
















Similar content being viewed by others
Availability of data
All raw data are included in the supplementary material. In due course, samples will be catalogued and stored in the National Rock and Ore Collection, at the Smithsonian’s National Museum of Natural History.
References
Albert C, Farina F, Lana C, Stevens G, Storey C, Gerdes A, Dopico CM (2016) Archean crustal evolution in the Southern São Francisco craton, Brazil: constraints from U-Pb, Lu-Hf and O isotope analyses. Lithos 266–267:64–86. https://doi.org/10.1016/j.lithos.2016.09.029
Alkmim FF, Teixeira W (2017) The paleoproterozoic mineiro belt and the quadrilátero ferrífero. São Francisco Craton. Springer, Eastern Brazil, pp 71–94
Anhaeusser CR (2006) Mafic and ultramafic intrusions of the Kaapvaal Craton. The Geology of South Africa, pp 95–134
Arndt N (2003) Komatiites, kimberlites, and boninites. J Geophysi Res Solid Earth 108:1–11. https://doi.org/10.1029/2002JB002157
Arndt N, Lesher M, Barnes S (2008) Komatiite. Cambridge University Press, England
Baltazar OF, Zucchetti M (2007) Lithofacies associations and structural evolution of the Archean Rio das Velhas Greenstone belt, Quadrilátero Ferrífero, Brazil: a Review of the Setting of Gold Deposits. Ore Geol Rev 32:471–499
Barnes S-J (1985) The petrography and geochemistry of komatiite flows from the Abitibi Greenstone Belt and a model for their formation. Lithos 18:241–270
Barnes SJ (1998) Chromite in komatiites, 1. Magmatic controls on crystallization and composition. J Petrol 39:1689–1720. https://doi.org/10.1093/petrology/39.10.1689
Barnes SJ (2000) Chromite in komatiites, II. Modification during Greenschist to mid-amphibolite facies metamorphism. J Petrol 41:387–409. https://doi.org/10.1093/petrology/41.3.387
Barnes SJ (2006) Komatiites: petrology, volcanology, metamorphism, and geochemistry. Society of Economic Geologists Special Publication 13
Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302
Barnes SJ, Heggie GJ, Fiorentini ML (2013) Spatial variation in platinum group element concentrations in ore-bearing komatiite at the long-victor deposit Kambalda Dome, Western Australia: enlarging the footprint of nickel sulfide orebodies. Econ Geol 108:913–933. https://doi.org/10.2113/econgeo.108.5.913
Birner SK, Cottrell E, Warren JM, Kelley KA, Davis FA (2021) Melt addition to mid-ocean ridge peridotites increases spinel Cr# with no significant effect on recorded oxygen fugacity. Earth Planet Sci Lett 566:116951. https://doi.org/10.1016/j.epsl.2021.116951
Brando Soares M, Corrêa Neto AV, Fabricio-Silva W (2020) The development of a Meso- to Neoarchean rifting-convergence-collision-collapse cycle over an ancient thickened protocontinent in the south São Francisco craton, Brazil. Gondwana Res 77:40–66. https://doi.org/10.1016/j.gr.2019.06.017
Bruno H, Heilbron M, Strachan R, Fowler M, de Morisson Valeriano C, Bersan S, Moreira H, Cutts K, Dunlop J, Almeida R (2021) Earth’s new tectonic regime at the dawn of the Paleoproterozoic: Hf isotope evidence for efficient crustal growth and reworking in the São Francisco craton, Brazil. Geology 49(10):1214–1219
Cann JR (1970) Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth Planet Sci Lett 10:7–11. https://doi.org/10.1016/0012-821X(70)90058-0
Carneiro MA, Teixeira W, de Carvalho Júnior IM, Pimentel MM, de Oliveira AH (2004) Comportamento dos sistemas Sm-Nd e Rb-Sr da seqüência acamadada máfico-ultramáfica Ribeirão dos Motas (arqueano), cráton São Francisco Meridional: evidências de enriquecimento mantélico e fracionamento isotópico: Geologia USP. Sér Cient 4:13–26
Carvalho BB, Janasi VA, Sawyer EW (2017) Evidence for Paleoproterozoic anatexis and crustal reworking of Archean crust in the São Francisco Craton, Brazil: a dating and isotopic study of the Kinawa migmatite. Precambrian Res 291:98–118
Chavagnac V (2004) A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos 75:253–281. https://doi.org/10.1016/j.lithos.2004.03.001
Chaves AO, Porcher CC (2020) Petrology, geochemistry and Sm-Nd systematics of the Paleoproterozoic Itaguara retroeclogite from São Francisco/Congo Craton: one of the oldest records of the modern-style plate tectonics. Gondwana Res 87:224–237. https://doi.org/10.1016/j.gr.2020.06.014
Chaves AO, Alexandre Goulart LE, Coelho RM, Miranda DA, de Oliveira Aranda R, de Moraes L, Ramos SL (2019) High-pressure eclogite facies metamorphism and decompression melting recorded in paleoproterozoic accretionary wedge adjacent to probable ophiolite from Itaguara (southern São Francisco Craton-Brazil). J South Am Earth Sci 94:102226. https://doi.org/10.1016/j.jsames.2019.102226
Connolly BD, Puchtel IS, Walker RJ, Arevalo R, Piccoli PM, Byerly G, Robin-Popieul C, Arndt N (2011) Highly siderophile element systematics of the 3.3Ga Weltevreden komatiites, South Africa: implications for early Earth history. Earth Planet Sci Lett 311:253–263. https://doi.org/10.1016/j.epsl.2011.09.039
Cordani UG, Sato K, Teixeira W, Tassinari CCG, Basei MAS (2000) Crustal evolution of the South American platform. Tectonic Evol South Am 31:19–40
Cutts KA (2020) Comment on “Petrology, geochemistry and Sm-Nd systematics of the Paleoproterozoic Itaguara retroeclogite from Sao Francisco/Congo Craton: one of the oldest records of the modern-style plate tectonics.” Gondwana Res 98:1–5. https://doi.org/10.1016/j.gr.2020.12.007
Dann JC (2000) The 3.5 Ga Komati Formation, Barberton greenstone belt, South Africa, part I: new maps and magmatic architecture. S Afr J Geol 103:47–68
Dann JC (2001) Vesicular komatiites, 3.5-Ga Komati Formation, Barberton Greenstone Belt, South Africa: inflation of submarine lavas and origin of spinifex zones. Bull Volcanol 63:462–481
de Menezes Leal AB, Santos ALD, Bastos Leal LR, Cunha JC (2015) Geochemistry of contaminated komatiites from the Umburanas greenstone belt, Bahia State, Brazil. J South Am Earth Sci 61:1–13. https://doi.org/10.1016/j.jsames.2015.03.006
Endo I, Machado R, Galbiatti HF, Rossi DQ, de Zapparoli AC, Delgado CER, Castro PTA, de Oliveira MMF (2020) Estratigrafia e Evolução Estrutural do Quadrilátero Ferrífero, Minas Gerais. In: Castro PTA, Endo I, Gandini AL (eds) Quadrilátero Ferrífero: Avanços do conhecimento nos últimos. Belo Horizonte
Evans BW, Frost BR (1975) Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochim Cosmochim Acta 39:959–972. https://doi.org/10.1016/0016-7037(75)90041-1
Farina F, Albert C, Martínez Dopico C, Aguilar Gil C, Moreira H, Hippertt JP, Cutts K, Alkmim FF, Lana C (2016) The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil): current models and open questions. J South Am Earth Sci 68:4–21. https://doi.org/10.1016/j.jsames.2015.10.015
Ferreira RCR, Pinheiro MAP, Magalhães JR, Novo TA, Schorscher JHD, Queiroga G (2020) Physical volcanology and petrogenesis of the Archean Quebra Osso komatiite flow field, Rio das Velhas greenstone belt, Quadrilátero Ferrífero (Brazil). Lithos 370–371:105626. https://doi.org/10.1016/j.lithos.2020.105626
Frost BR (1991) Chapter 13. Stability of oxide minerals in metamorphic rocks. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance. Mineralogical Society of America, USA, pp 469–488
Gangopadhyay A, Sproule RA, Walker RJ, Lesher CM (2005) Re-Os systematics of komatiites and komatiitic basalts at Dundonald Beach, Ontario, Canada: evidence for a complex alteration history and implications of a late-Archean chondritic mantle source. Geochim Cosmochim Acta 69:5087–5098. https://doi.org/10.1016/j.gca.2005.04.021
Gangopadhyay A, Walker RJ, Hanski E, Solheid PA (2006) Origin of paleoproterozoic komatiites at Jeesiörova, Kittilä Greenstone Complex, Finnish Lapland. J Petrol 47:773–789. https://doi.org/10.1093/petrology/egi093
Godard M, Jousselin D, Bodinier J (2000) Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet Sci Lett 180:133–148
Godard M, Lagabrielle Y, Alard O, Harvey J (2008) Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge. Earth Planet Sci Lett 267:410–425. https://doi.org/10.1016/j.epsl.2007.11.058
Goulart LEA, Carneiro MA, Endo I, de Suita MT, F., (2013) New evidence of Neoarchean crustal growth in southern São Francisco Craton: the carmópolis de minas layered suite, Minas Gerais, Brazil. Braz J Geol 43:445–459
Goulart LEA, Carneiro MA (2008) General characteristics and lithogeochemistry of the Itaguara layered (Ultramafic-Mafic) sequence, Southern São Francisco Craton. Geochem Bras 22:45–72. https://doi.org/10.21715/gb.v22i1.277
Green DH (1975) Genesis of archean peridotitic magmas and constraints on archean geothermal gradients and tectonics. Geology 3:15–18. https://doi.org/10.1130/0091-7613(1975)3%3c15:GOAPMA%3e2.0.CO;2
Grove TL, Parman SW, Dann JC (1999) Conditions of magma generation for Archean komatiites from the Barberton Mountainland, South Africa. Mantle Petrol 155–165
Guice GL, McDonald I, Hughes HSR, Schlatter DM, Goodenough KM, Macdonald JM, Faithfull JW (2018) Assessing the validity of negative high field strength-element anomalies as a proxy for archaean subduction: evidence from the Ben Strome Complex, NW Scotland. Geosciences 8:338. https://doi.org/10.3390/geosciences8090338
Guice GL (2019) Origin and geodynamic significance of ultramafic-mafic complexes in the North Atlantic and Kaapvaal Cratons. Cardiff University. http://orca.cf.ac.uk/123339/
Guice GL, McDonald I, Hughes HSR, Anhaeusser CR (2019) An evaluation of element mobility in the Modderfontein ultramafic complex, Johannesburg: origin as an archaean ophiolite fragment or greenstone belt remnant? Lithos 332–333:99–119. https://doi.org/10.1016/j.lithos.2019.02.013
Guice GL, Ackerson MR, Holder RM, George FR, Browning-Hanson JF, Burgess JL, Foustoukos DI, Becker NA, Nelson WR, Viete DR (2021) Suprasubduction zone (SSZ) ophiolite fragments in the central Appalachian Orogen, USA: evidence for mantle and Moho in the Baltimore Mafic Complex (Maryland). Geosphere 17:561–581. https://doi.org/10.1130/GES02289.111
Hanski E, Kamenetsky VS (2013) Chrome spinel-hosted melt inclusions in Paleoproterozoic primitive volcanic rocks, northern Finland: evidence for coexistence and mixing of komatiitic and picritic magmas. Chem Geol 343:25–37. https://doi.org/10.1016/j.chemgeo.2013.02.009
Hanski E, Huhma H, Rastas P, Kamenetsky VS (2001) The palaeoproterozoic komatiite-picrite association of Finnish lapland. J Petrol 42:855–876. https://doi.org/10.1093/petrology/42.5.855
Hayman PC, Thébaud N, Pawley MJ, Barnes SJ, Cas RAF, Amelin Y, Sapkota J, Squire RJ, Campbell IH, Pegg I (2015) Evolution of a ~2.7Ga large igneous province: a volcanological, geochemical and geochronological study of the Agnew Greenstone Belt, and new regional correlations for the Kalgoorlie Terrane (Yilgarn Craton, Western Australia). Precambrian Res 270:334–368. https://doi.org/10.1016/j.precamres.2015.09.016
Heilbron M, Cordani UG, Alkmim FF, Reis HLS (2017) Tectonic genealogy of a miniature continent, pp. 321–331. https://doi.org/10.1007/978-3-319-01715-0_17
Herzberg C (1992) Depth and degree of melting of komatiites. J Geophys Res Solid Earth 97:4521–4540
Hey MH (1954) A new review of the chlorites. Mineral Mag J Mineral Soc 30:277–292
Houlé MG, Préfontaine S, Fowler AD, Gibson HL (2009) Endogenous growth in channelized komatiite lava flows: Evidence from spinifex-textured sills at Pyke Hill and Serpentine Mountain, Western Abitibi Greenstone Belt, Northeastern Ontario, Canada. Bull Volcanol 71:881–901. https://doi.org/10.1007/s00445-009-0273-y
Huber MS, Byerly GR (2018) Volcanological and petrogenetic characteristics of komatiites of the 3.3 ga saw mill complex, weltevreden formation, barberton greenstone belt, South Africa. South Afr J Geol 121:463–486. https://doi.org/10.25131/sajg.121.0031
Inoue T, Rapp RP, Zhang J, Gasparik T, Weidner DJ, Irifune T (2000) Garnet fractionation in a hydrous magma ocean and the origin of Al-depleted komatiites: melting experiments of hydrous pyrolite with REEs at high pressure. Earth Planet Sci Lett 177:81–87. https://doi.org/10.1016/S0012-821X(00)00038-8
Irvine TN (1967) Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Can J Earth Sci 4:71–103
Irvine TN (1965) Chromian spinel as a petrogenetic indicator: Part 1. Theory. Can J Earth Sci 2:648–672
Ivanic TJ, Wingate MTD, Kirkland CL, Van Kranendonk MJ (2010) Age and significance of voluminous mafic—ultramafic magmatic events in the Murchison Domain, Yilgarn Craton Age and significance of voluminous mafic—ultramafic magmatic events in the Murchison Domain, Yilgarn. Austr J Earth Sci 57:597–614. https://doi.org/10.1080/08120099.2010.494765
Jahn B-M, Schrank A (1983) REE geochemistry of komatiites and associated rocks from Piumhi, southeastern Brazil. Precambrian Res 21:1–20
Kirk JD, Ubano Munha JM, Petronilho LA, Noce CM (2008) Re-Os isotope systematics of sulfides and komatiites associated with gold mineralization from the Quadrilatero Ferrifero, Brazil. In: 44th Brazilian Congress of Geology
Konnunaho JP, Hanski EJ, Bekker A, Halkoaho TAA, Hiebert RS, Wing BA (2013) The Archean komatiite-hosted, PGE-bearing Ni-Cu sulfide deposit at Vaara, eastern Finland: evidence for assimilation of external sulfur and post-depositional desulfurization. Miner Dep 48:967–989. https://doi.org/10.1007/s00126-013-0469-0
Lahaye Y, Arndt NT (1996) Alteration of a Komatiite Flow from. J Petrol 37:1261–1284
Lahaye Y, Arndt N, Byerly G, Chauvel C, Fourcade S, Gruau G (1995) The influence of alteration on the trace-element and Nd isotopic compositions of komatiites. Chem Geol 126:43–64
Lana C, Alkmim FF, Armstrong R, Scholz R, Romano R, Nalini HA Jr (2013) The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Res 231:157–173
Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG (1997) Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineral Mag 61:295–310
Lobato LM, Ribeiro-Rodrigues LC, Vieira FWR (2001) Brazil’s premier gold province. Part II: geology and genesis of gold deposits in the archean Rio Das Velhas Greenstone Belt, Quadrilátero Ferrífero. Mineral Deposita 36:249–277
Locmelis M, Pearson NJ, Barnes SJ, Fiorentini ML (2011) Ruthenium in komatiitic chromite. Geochim Cosmochim Acta 75:3645–3661. https://doi.org/10.1016/j.gca.2011.03.041
Locmelis M, Fiorentini ML, Barnes SJ, Pearson NJ (2013) Ruthenium variation in chromite from komatiites and komatiitic basalts—a potential mineralogical indicator for nickel sulfide mineralization. Econ Geol 108:355–364
Machado N, Carneiro M (1992) U-Pb evidence of late Archean tectono-thermal activity in the southern São Francisco shield, Brazil. Can J Earth Sci 29:2341–2346
Massonne H-J (2020) Comments to “high-pressure eclogite facies metamorphism and decompression melting recorded in Paleoproterozoic accretionary wedge adjacent to probable ophiolite from Itaguara (southern São Francisco Craton-Brazil).” J South Am Earth Sci 99:102495
McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Melo-Silva P, da Amaral WS, Oliveira EP (2020) Geochronological evolution of the Pitangui greenstone belt, southern São Francisco Craton, Brazil: constraints from U-Pb zircon age, geochemistry and field relationships. J South Am Earth Sci 99:102380. https://doi.org/10.1016/j.jsames.2019.102380
Moreno JA, Baldim MR, Semprich J, Oliveira EP, Verma SK, Teixeira W (2017) Geochronological and geochemical evidences for extension-related Neoarchean granitoids in the southern São Francisco Craton, Brazil. Precambrian Res 294:322–343
Naldrett AJ, Turner AR (1977) The geology and petrogenesis of a greenstone belt and related nickel sulfide mineralization at Yakabindie, Western Australia. Precambrian Res 5:43–103
Nicklas RW, Puchtel IS, Ash RD (2018) Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochim Cosmochim 222:447–466. https://doi.org/10.1016/j.gca.2017.11.002
Nisbet E, Bickle MJ, Martin A (1977) The mafic and ultramafic lavas of the belingwe greenstone belt, Rhodesia. J Petrol 18:521–566. https://doi.org/10.1093/petrology/18.4.521
Noce CM, Zucchetti M, Baltazar OF, Armstrong R, Renger FE, Lobato LM (2005) Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas greenstone belt (Quadrilátero Ferrífero, Brazil): U-Pb zircon dating of volcaniclastic graywackes. Precambrian Res 141:67–82
Ohtani E (1984) Generation of komatiite magma and gravitational differentiation in the deep upper mantle. Earth Planet Sci Lett 67:261–272
Papunen H, Halkoaho T, Luukkonen E (2009) Archaean evolution of the tipasjärvi-Kuhmo-Suomussalmi greenstone complex, Finland, pp 1–68
Parman SW, Dann JC, Grove TL, De Wit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 150:303–323
Parman SW, Grove TL, Dann JC (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys Res Lett 28:2513–2516
Parman SW, Shimizu N, Grove TL, Dann JC (2003) Constraints on the pre-metamorphic trace element composition of Barberton komatiites from ion probe analyses of preserved clinopyroxene. Contrib Mineral Petrol 144:383–396. https://doi.org/10.1007/s00410-002-0406-1
Parman SW, Grove TL, Dann JC, de Wit MJ (2004) A subduction origin for komatiites and cratonic lithospheric mantle. South Afr J Geol 107:107–118. https://doi.org/10.2113/107.1-2.107
Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15° 20′ N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem Geol 234:179–210. https://doi.org/10.1016/j.chemgeo.2006.04.011
Pinheiro SO, Nilson AA (2000) Metakomatiitic and meta-ultramafic rocks from the Rio Manso Region Minas Gerais: geology textures and metamorphism. Rev Brasil Geociên 30:421–423. https://doi.org/10.25249/0375-7536.2000303421423
Pinheiro MAP, Guice GL, Magalhães JR (2021) Archean–Ediacaran evolution of the Campos Gerais Domain—a reworked margin of the São Francisco paleocontinent (Brazil): constraints from metamafic–ultramafic rocks. Geosci Front 101201. https://doi.org/10.1016/j.gsf.2021.101201.
Puchtel IS, Walker RJ, Brandon AD, Nisbet EG (2009) Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochim Cosmochim Acta 73:6367–6389. https://doi.org/10.1016/j.gca.2009.07.022
Puchtel IS, Blichert-Toft J, Touboul M, Walker RJ, Byerly GR, Nisbet EG, Anhaeusser CR (2013) Insights into early Earth from Barberton komatiites: evidence from lithophile isotope and trace element systematics. Geochim Cosmochim Acta 108:63–90. https://doi.org/10.1016/j.gca.2013.01.016
Puchtel IS, Mundl-Petermeier A, Horan M, Hanski EJ, Blichert-Toft J, Walker RJ (2020) Ultra-depleted 205 Ga komatiites of Finnish Lapland: products of grainy late accretion or core-mantle interaction? Chem Geol 554:119801. https://doi.org/10.1016/j.chemgeo.2020.119801
Pyke DR, Naldrett AJ, Eckstrand OR (1973) Archean ultramafic flows in Munro Township, Ontario. Bull Geol Soc Am 84:955–978. https://doi.org/10.1130/0016-7606(1973)84%3c955:AUFIMT%3e2.0.CO;2
Robin-Popieul CCM, Arndt NT, Chauvel C, Byerly GR, Sobolev AV, Wilson A (2012) A new model for barberton komatiites: deep critical melting with high melt retention. J Petrol 53:2191–2229. https://doi.org/10.1093/petrology/egs042
Rogers JJW, Santosh M (2003) Supercontinents in Earth history. Gondwana Res 6:357–368
Romano R, Lana C, Alkmim FF, Stevens G, Armstrong R (2013) Stabilization of the southern portion of the São Francisco craton, SE Brazil, through a long-lived period of potassic magmatism. Precambrian Res 224:143–159
Rosière CA, Spier CA, Rios FJ, Suckau VE (2008) The itabirites of the Quadrilátero Ferrífero and related high-grade iron ore deposits: an overview. Rev Econ Geol 15:223–254
Rossignol C, Lana C, Alkmim F (2020) Geodynamic evolution of the Minas Basin, southern Sao Francisco Craton (Brazil), during the early Paleoproterozoic: climate or tectonic? J South Am Earth Sci 101:102628
Ruchsky UA, Machado MM, Noce CM (2011) Meta-komatiitos do Morro do Onca, um Imporante Sitio Geologico do Quadrilatero Ferrifero – MG. Geonomos 192:100–106
Schneider KP, Hoffmann JE, Münker C, Patyniak M, Sprung P, Roerdink D, Garbe-Schönberg D, Kröner A (2019) Petrogenetic evolution of metabasalts and metakomatiites of the lower Onverwacht Group, Barberton Greenstone Belt (South Africa). Chem Geol 511:152–177. https://doi.org/10.1016/j.chemgeo.2019.02.020
Schorscher JHD (1992) Arcabouço petrográfico e evolução crustal dos terrenos pré-cambrianos do sudeste de Minas Gerais: Quadrilátero Ferrífero, Espinhaço Meridional, e domos granitoides-gnáissicos adjacentes. Universidade de São Paulo USP, São Paulo, p 393
Scott CR, Mueller WU, Pilote P (2002) Physical volcanology, stratigraphy, and lithogeochemistry of an Archean volcanic arc: Evolution from plume-related volcanism to arc rifting of SE Abitibi Greenstone Belt, Val d’Or, Canada. Precambrian Res 115:223–260. https://doi.org/10.1016/S0301-9268(02)00011-6
Shimizu K, Komiya T, Hirose K, Shimizu N, Maruyama S (2001) Cr-spinel, an excellent micro-container for retaining primitive melts—implications for a hydrous plume origin for komatiites. Earth Planet Sci Lett 189:177–188. https://doi.org/10.1016/S0012-821X(01)00359-4
Shimizu K, Nakamura E, Maruyama S (2005) The geochemistry of ultramafic to mafic volcanics from the belingwe greenstone belt, Zimbabwe: magmatism in an archean continental large igneous province. J Petrol 46:2367–2394. https://doi.org/10.1093/petrology/egi059
Sills JD, Savage D, Watson JV, Windley BF (1982) Layered ultramafic-gabbro bodies in the Lewisian of northwest Scotland: geochemistry and petrogenesis. Earth Planet Sci Lett 58:345–360. https://doi.org/10.1016/0012-821X(82)90085-1
Silva MA, Pinto CP, Pinheiro MAP, Marinho MS, Lombello JC, Pinho JM, Goulart LEA, Magalhães JR (2020) Mapa Geológico do Estado de Minas Gerais. Projeto Geologia do Estado de Minas Gerais. http://rigeo.cprm.gov.br/jspui/handle/doc/21828
Sobolev AV, Asafov EV, Gurenko AA, Arndt NT, Batanova VG, Portnyagin MV, Garbe-Schönberg D, Krasheninnikov SP (2016) Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531:628–632. https://doi.org/10.1038/nature17152
Sossi PA, Eggins SM, Nesbitt RW, Nebel O, Hergt JM, Campbell IH, O’Neill HSC, Kranendonk MV, Rhodri Davies D (2016) Petrogenesis and geochemistry of Archean Komatiites. J Petrol 57:147–184. https://doi.org/10.1093/petrology/egw004
Sproule RA, Lesher CM, Ayer JA, Thurston PC, Herzberg CT (2002) Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Res 115:153–186. https://doi.org/10.1016/S0301-9268(02)00009-8
Suita MTF, Strieder AJ (1996) Cr-spinels from brazilian mafic-ultramafic complexes: metamorphic modifications. Int Geol Rev 38:245–267. https://doi.org/10.1080/00206819709465333
Szabó GAJ (1996) Petrologia da suite metaultramáfica da seqüência vulcano-sedimentar Morro do Ferro na região de sul a oeste de Alpinópolis. Universidade de São Paulo, MG (Domínio norte do complexo Campos Gerais). https://doi.org/10.11606/T.44.1996.tde-20032013-161120
Teixeira NA, Gaspar JC, Brenner TL, Cheney JT, Marchetto CML (1987) Geologia e implicações geotectônicas do Greenstone Belt Morro do Ferro, Fortaleza de Minas. Rev Brasil Geocien 17:209–220
Teixeira W, Oliveira EP, Marques LS (2017) Nature and evolution of the Archean crust of the São Francisco Craton. São Francisco Craton. Springer, Eastern Brazil, pp 29–56
Thébaud N, Barnes S, Fiorentini M (2012) Komatiites of the Wildara-Leonora Belt, Yilgarn Craton, WA: The missing link in the Kalgoorlie Terrane? Precambr Res 196–197:234–246. https://doi.org/10.1016/j.precamres.2011.11.008
Thompson Stiegler M, Cooper M, Byerly GR, Lowe DR (2012) Geochemistry and petrology of komatiites of the Pioneer Ultramafic Complex of the 3.3Ga Weltevreden formation Barberton Greenstone Belt, South Africa. Precamb Res 212–213:1–12. https://doi.org/10.1016/j.precamres.2012.04.017
van Acken D, Hoffmann JE, Schorscher JHD, Schulz T, Heuser A, Luguet A (2016) Formation of high-Al komatiites from the Mesoarchean Quebra Osso Group, Minas Gerais, Brazil: Trace elements, HSE systematics and Os isotopic signatures. Chem Geol 422:108–121. https://doi.org/10.1016/j.chemgeo.2015.12.015
Verma SK, Oliveira EP, Silva PM, Moreno JA, Amaral WS (2017) Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil: implications for the origin, evolution, and tectonic setting. Lithos 284–285:560–577. https://doi.org/10.1016/j.lithos.2017.04.024
Viljoen MJ, Viljoen RP, Smith HS, Erlank AJ (1983) Geological, textural and geochemical features of komatiitic flows from the Komati Formation. Geol Soc S Afr Spec Publ 9:1–20
Waterton P, Pearson DG, Kjarsgaard B, Hulbert L, Locock A, Parman S, Davis B (2017) Age, origin, and thermal evolution of the ultra-fresh ~ 1.9 Ga Winnipegosis Komatiites, Manitoba, Canada. Lithos 268–271:114–130. https://doi.org/10.1016/j.lithos.2016.10.033
Waterton P, Pearson DG, Mertzman SA, Mertzman KR, Kjarsgaard BA (2020) A fractional crystallization link between komatiites, basalts, and dunites of the palaeoproterozoic Winnipegosis Komatiite Belt, Manitoba, Canada. J Petrol. https://doi.org/10.1093/petrology/egaa052
Wilson AH (2019) The late-paleoarchean ultra-depleted commondale komatiites: earth’s hottest lavas and consequences for eruption. J Petrol 60:1575–1620. https://doi.org/10.1093/petrology/egz040
Zhou MF, Kerrich R (1992) Morphology and composition of chromite in komatiites from the Belingwe Greenstone-Belt, Zimbabwe. Can Mineral 30:303–317
Acknowledgements
GLG would like to thank: Rob Wardell and Tim Gooding for tutelage and assistance with a variety of sample preparation and laboratory-related tasks; Tim Rose for remote microprobe assistance; Robert Holder, Daniel Viete and Freya George for assistance with LA-ICP-MS analyses and trace-element data; Dionysis Foustoukos for access to the XRF facilities; and Leonardo de Laurentis for invaluable fieldwork and Portuguese assistance. GLG, JRM, MAPP, and RCRF would like to express our gratitude to Luís Goulart for the Morro do Onça coordinates and field discussions. JRM, MAPP, and RCRF thank the Geological Survey of Brazil for support. VTM acknowledges that this research was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant #404767. We would also like to thank reviewers Stephen Barnes and Pedro Waterton, who provided extremely constructive reviews that greatly helped to improve our manuscript, as well as Associate Editor Dante Canil, who provided helpful comments and suggestions.
Funding
GLG’s research was funded by a Peter Buck Postdoctoral Fellowship, Smithsonian’s National Museum of Natural History. VTM acknowledges that this research was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant #404767/2016-8 and FAPESP Process #2021/00967-5.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Guice, G.L., Magalhães, J.R., Pinheiro, M.A.P. et al. Spinel-group minerals as a record of magmatic and metamorphic processes: evidence from the highly altered Morro do Onça ultramafic suite, São Francisco Craton (Brazil). Contrib Mineral Petrol 177, 34 (2022). https://doi.org/10.1007/s00410-022-01901-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00410-022-01901-0


