Skip to main content
Log in

Direct nanoscale observations of degassing-induced crystallisation in felsic magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Water degassing plays a major role in magma transport and eruption by increasing liquidus temperatures, bubble and crystal volume fractions, and strongly affecting the viscosity of bulk magma. High spatial resolution textural analysis detailing the dynamics of bubble and crystal growth is key to unravelling the swift changes in magma crystallinity and gas content that affect the conditions of magma flow, fragmentation, and eruption. Ex situ observation of samples from a previous experimental study of magma degassing reveals that vesicles are surrounded by chemically heterogeneous residual glass that may be produced by newly formed minerals that are not observable at the microscale. Here, we present new in situ high-temperature (500–1100 °C), time-elapsed (every ~ 20 min at 200–800 °C, ~ 10 min at 900–1000 °C, and ~ 5 min at 1100 °C) observations of degassing of synthesised, hydrous (4.2 wt.% H2O) dacite glasses using scanning transmission electron microscopy at 0.4 nm resolution. The experiments reproduce degassing of a silicic melt by high-temperature heated stage mounted in the analytical instrument. We monitor the dynamics of nucleation and growth of nanobubbles that experience coalescence and formation of microbubbles and trigger the nucleation and growth of nanolites of plagioclase, clinopyroxene, Fe-Ti oxides, and quartz, at the expense of the residual melt. The ability to image degassing and crystallisation at nanoscale reveals a sequence of complex physical and chemical changes of the residual melt and shows that the kinetics of crystallisation in silicic melts is modulated by the melt’s ability to exsolve fluids that help form mineral nuclei and nanolites. Finally, we highlight that the competition between gas retention and crystallisation is initiated at the nanoscale and may anticipate the role of microlites in controlling rates of magma ascent in a volcanic conduit and modulating the style of the consequent volcanic eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alidibirov M, Dingwell DB (2000) Three fragmentation mechanisms for highly viscous magma under rapid decompression. J Volcanol Geotherm Res 100:413–421

    Google Scholar 

  • Allabar A, Gross ES, Nowak M (2020) The effect of initial H2O concentration on decompression induced phase separation and degassing of hydrous phonolitic melt. Contrib Mineral Petrol 2:1–19

    Google Scholar 

  • Applegarth LJ, Tuffen HJ, Pinkerton MH, Cashman KV (2013) Direct observations of degassing induced crystallization in basalts. Geology 41:243–246

    Google Scholar 

  • Ardia P, Giordano D, Schmidt MW (2008) A model for the viscosity of rhyolite as a function of H2O-content and pressure: a calibration based on centrifuge piston cylinder experiments. Geochim Cosmochim Acta 72:6013–6123

    Google Scholar 

  • Ardia P, Di Muro A, Giordano D, Massare D, Sanchez-Valle C, Schmidt MW (2014) Densification mechanisms of haplogranite glasses as a function of water content and pressure based on density and Raman data. Geochimica et Cosmochimica Acta 138:158–180

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo ZAF and ψ (ρz) procedures. In: Newbury DE (ed) Microbeam analysis. San Francisco Press Inc, San Francisco, CA, pp 239–246

    Google Scholar 

  • Arzilli F, Carroll M (2013) Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt. Contrib Mineral Petrol 166:1011–1027

    Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholitic crystal mushes. J Petrol 45:1565–1582

    Google Scholar 

  • Bagdassarov NS, Dingwell DB, Wilding MC (1996) Rhyolite magma degassing: an experimental study of melt vesiculation. Bull Volcanol 57:587–601

    Google Scholar 

  • Balashov N, Zaraisky GP, Seltmann R (2000) Fluid-magmatic interaction and oscillation phenomena during granite melt crystallization with water-fluoride fluid gain-loss. Petrologiya 8:563–585

    Google Scholar 

  • Barmin A, Melnik O, Sparks RSJ (2002) Periodic behavior in lava dome eruptions. Earth Planet Sci Lett 199:173–184

    Google Scholar 

  • Befus KS (2016) Crystallization kinetics of rhyolitic melts using oxygen isotope ratios. Geophys Res Lett. https://doi.org/10.1002/2015GL067288

    Article  Google Scholar 

  • Befus KS, Andrews BJ (2018) Crystal nucleation and growth produced by continuous decompression of Pinatubo magma. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-018-1519-5

    Article  Google Scholar 

  • Bikerman JJ (1973) Foams. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Binder K (2015) Demixing. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York, pp 537–553

    Google Scholar 

  • Binder K, Stauffer D (1974) Theory for the slowing down of the relaxation and spinodal decomposition of binary mixtures. Phys Rev Lett 33:1006–1009

    Google Scholar 

  • Blatter D, Carmichael I (1998) Plagioclase-free andesites from Zitácuaro (Michoacán), Mexico: petrology and experimental constraints. Contrib Mineral Petrol 132:121–138

    Google Scholar 

  • Blatter D, Carmichael I (2001) Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for a mantle origin? Geochim Cosmochim Acta 65:4043–4065

    Google Scholar 

  • Blatter D, Carmichael I, Deino A, Renne P (2001) Neogene volcanism at the front of the central Mexican volcanic belt: basaltic andesites to dacites, with contemporaneous shoshonites and high-TiO2 lavas. Geol Soc Am Bull 113:1324–1342

    Google Scholar 

  • Blower JD (2001) Factors controlling permeability-porosity relationships in magma. Bull Volcanol 63:497–504

    Google Scholar 

  • Blower JD, Mader HM, Wilson SDR (2001) Coupling of viscous and diffusive controls on bubble growth during explosive volcanic eruptions. Earth Planet Sci Lett 193:47–56

    Google Scholar 

  • Blundy JD, Sparks RSJ (1992) Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy. J Petrol 33:1039–1104

    Google Scholar 

  • Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80

    Google Scholar 

  • Brugger C, Hammer J (2010) Crystallization kinetics in continuous decompression experiments: implications for interpreting natural magma ascent processes. J Petrol 51:1941–1965

    Google Scholar 

  • Burgisser A, Gardner JE (2005) Experimental constraints on degassing and permeability in volcanic conduit flow. Bull Volcanol 67:42–56

    Google Scholar 

  • Burgisser A, Chevalier L, Gardner JE, Castro JM (2017) The percolation threshold and permeability evolution of ascending magmas. Earth Planet Sci Lett 470:37–47

    Google Scholar 

  • Byerly GR, Melson WG, Nelen J, Jarosewich E (1977) Abyssal volcanic glasses as indicators of magma compositions. Smithson Contrib Earth Sci 19:22–29

    Google Scholar 

  • Cabrera A, Weinberg RF, Wright HMN, Zlotnik S, Cas RAF (2010) Melt fracturing and healing: a mechanism for degassing and origin of silicic obsidian. Geology 39:67–70

    Google Scholar 

  • Cáceres F, Wadsworth FB, Scheu B, Colombier M, Madonna C, Cimarelli C, Hess K-U, Kaliwoda M, Ruthensteiner B, Dingwell DB (2020) Can nanolites enhance eruption explosivity? Geology 48:997–1001

    Google Scholar 

  • Cáceres F, Scheu B, Hess K-U, Cimarelli C, Vasseur J, Kaliwoda M, Dingwell DB (2021) From melt to crystals: the effects of cooling on Fe–Ti oxide nanolites crystallisation and melt polymerisation at oxidising conditions. Chem Geol 563:120057

    Google Scholar 

  • Cahn JW (1961) On spinodal decomposition. Acta Metal 9:795–801

    Google Scholar 

  • Cann JR (1970) Upward movement of granitic magma. Geol Mag 107:335–340

    Google Scholar 

  • Caricchi L, Pommier A, Pistone M, Castro J, Burgisser A, Perugini D (2011) Strain-induced magma degassing: insights from simple-shear experiments on bubble bearing melts. Bull Volcanol 73:1245–1257

    Google Scholar 

  • Cashman KV (1992) Groundmass crystallization of Mount St. Helens dacite, 1980–1986: a tool for interpreting shallow magmatic processes. Contrib Miner Petrol 109:431–449

    Google Scholar 

  • Cashman KV, Blundy JD (2000) Degassing and crystallization of ascending andesite. Philos Trans R Soc 358:1487–1513

    Google Scholar 

  • Castro J, Manga M, Martin M (2005) Vesiculation rates of obsidian domes inferred from H2O concentration profiles. Geophys Res Lett 32:L21307

    Google Scholar 

  • Castro J, Beck P, Tuffen H, Nichols A, Dingwell DB, Martin M (2008) Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Am Miner 93:1816–1822

    Google Scholar 

  • Castro JM, Cordonnier B, Tuffen H, Tobin MJ, Puskar L, Martin MC, Bechtel HA (2012) The role of melt-fracture degassing in defusing explosive rhyolite eruptions at Volcán Chaitén. Earth Planet Sci Lett 333–334:63–69

    Google Scholar 

  • Cates ME, Wittmer JP, Bouchauad J-P, Claudin P (1998) Jamming, force chains and fragile matter. Phys Rev Lett 81:1841–1844

    Google Scholar 

  • Cazaux J (1996) Electron probe microanalysis of insulating materials: quantification problems and some possible solutions. X-Ray Spectrom 25:265–280

    Google Scholar 

  • Cichy S, Botcharnikov R, Holtz F, Behrens H (2011) Vesiculation and microlite crystallization induced by decompression: a case study of the 1991–1995 Mt. Unzen eruption (Japan). J Petrol 52:1469–1492

    Google Scholar 

  • Colombier M, Wadsworth FB, Gurioli L, Scheu B, Kueppers U, Di Muro A, Dingwell DB (2017) The evolution of pore connectivity in volcanic rocks. Earth Planet Sci Lett 462:99–109

    Google Scholar 

  • Cormier L (2014) Nucleation in glasses - new experimental findings and recent theories. Procedia Mater Sci 7:60–71

    Google Scholar 

  • Cottrell E, Lanzirotti A, Mysen B, Birner S, Kelley KA, Botcharnikov R, Davis FA, Newville M (2018) A Mössbauer-based XANES calibration for hydrous basalt glasses reveals radiation-induced oxidation of Fe. Am Mineral 103:489–501

    Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2003) The kinetics of degassing-induced crystallization at Soufrière hills volcano, Montserrat. J Petrol 44:1477–1502

    Google Scholar 

  • Deubener J, Allix M, Davis MJ, Duran A, Höche T, Honma T, Komatsu T, Krüger S, Mitra I, Müller R, Nakane S, Pascual MJ, Schmelzer JWP, Zanotto ED, Zhou S (2018) Updated definition of glass-ceramics. J Non-Crystalline Solids 501:3–10

    Google Scholar 

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328

    Google Scholar 

  • Di Genova D, Sicola S, Romano C, Vona A, Fanara S, Spina L (2017a) Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content. Chem Geol 475:76–86

    Google Scholar 

  • Di Genova D, Kolzenburg S, Wiesmaier S, Dallanave E, Neuville DR, Hess K-U, Dingwell DB (2017b) A chemical tipping point governing mobilization and eruption style of rhyolitic magma. Nature 552:235–238

    Google Scholar 

  • Di Genova D, Caracciolo A, Kolzenburg S (2018) Measuring the degree of “nanotilization” of volcanic glasses: understanding syn-eruptive processes recorded in melt inclusions. Lithos 318–319:209–218

    Google Scholar 

  • Di Genova D, Brooker RA, Mader HM, Drewitt JWE, Longo A, Deubener J, Neuville DR, Fanara S, Shebanova O, Anzellini S, Arzilli F, Bamber EC, Hennet L, La Spina G, Miyajima N (2020a) In situ observation of nanolite growth in volcanic melt: a driving force for explosive eruptions. Sci Adv 6:eabb0413

    Google Scholar 

  • Di Genova D, Zandona A, Deubener J (2020b) Unravelling the effect of nano-heterogeneity on the viscosity of silicate melts: implications for glass manufacturing and volcanic eruptions. J Non-Cryst Solids 545:120248. https://doi.org/10.1016/j.jnoncrysol.2020.120248

    Article  Google Scholar 

  • Dingwell DB, Webb SL (1989) Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Phys Chem Miner 16:508–516

    Google Scholar 

  • Dubosq R, Pleše P, Langelier B, Gault B, Schneider D (2021) Bubbles and element clusters in rock melts: a chicken and egg problem. EGU General Assembly 2021, pp EGU21–EGU60

    Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602

    Google Scholar 

  • Farquharson J, Heap MJ, Varley NR, Baud P, Reuschlé T (2015) Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study. J Volcanol Geotherm Res 297:52–68

    Google Scholar 

  • Farquharson JI, Heap MJ, Lavallée Y, Varley NR, Baud P (2016) Evidence for the development of permeability anisotropy in lava domes and volcanic conduits. J Volcanol Geotherm Res 323:163–185

    Google Scholar 

  • Gaonac′h, H, Lovejoy S, Schertzer D (2003) Percolating magmas and explosive volcanism. Geophys Res Lett 30(11):1559. https://doi.org/10.1029/2002GL016022

  • Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Geometrical percolation threshold of overlapping ellipsoids. Phys Rev E 52:819–828

    Google Scholar 

  • Gardner JE (2007) Bubble coalescence in rhyolitic melts during decompression from high pressure. J Volcanol Geotherm Res 166:161–176

    Google Scholar 

  • Gardner JE, Befus KS, Watkins JM, Clow T (2016) Nucleation rates of spherulites in natural rhyolitic lava. Am Miner 101:2367–2376

    Google Scholar 

  • Garing C, Gouze P, Kassab M, Riva M, Guadagnini A (2015) Anti-correlated porosity-permeability changes during the dissolution of carbonate rocks: experimental evidences and modelling. Transp Porous Med 107:595–621

    Google Scholar 

  • Garing C, de Chalendar JA, Voltolini M, Ajo-Franklin JB, Benson SM (2017) Pore-scale capillary pressure analysis using multi-scale X-ray micromotography. Adv Water Resour 104:223–241

    Google Scholar 

  • Gaunt HE, Sammonds PR, Meredith PG, Smith R, Pallister JS (2014) Pathways for degassing during the lava dome eruption of Mount St. Helens 2004–2008. Geology 2014:947–950

    Google Scholar 

  • Geschwind CH, Rutherford MJ (1995) Crystallization of microlites during magma ascent: the fluid mechanics of 1980–1986 eruptions of Mt St Helens. Bull Volcanol 57:356–370

    Google Scholar 

  • Giachetti T, Gonnermann HM, Gardner JE, Burgisser A, Hajimirza S, Earley TC, Truong N, Toledo P (2019) Bubble coalescence and percolation threshold in expanding rhyolitic magma. Geochem, Geophys, Geosyst 20:1054–1074

    Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Google Scholar 

  • Giordano D, Vona A, Gonzalez-Garcia D, Allabar A, Kolzenburg S, Polo L, de Janasi Assis V, Behrens H, De Campos CP, De Cristofaro S, Guimaraes Freitas L, Nowak M, Müller D, Günther A, Masotta M, Roverato M, Romano C, Dingwell DB (2021) Viscosity of Palmas-type magmas of the Paraná magmatic province (Rio Grande do Sul State, Brazil): implications for high-temperature silicic volcanism. Chem Geol 560:119981. https://doi.org/10.1016/j.chemgeo.2020.119981

    Article  Google Scholar 

  • Girona T, Costa F, Newhall C, Taisne B (2014) On depressurization of volcanic magma reservoirs by passive degassing. J Geophys Res Solid Earth 119:8667–8687

    Google Scholar 

  • Glazner AF (2019) The ascent of water-rich magma and decompression heating: a thermodynamic analysis. Am Mineral 104:890–896

    Google Scholar 

  • Global Volcanism Program (2021) Volcanoes of the world: v. 4.5.0. In: Venzke E (ed) Smithsonian Institution, Downloaded 22 Apr 2021. https://doi.org/10.5479/si.GVP.VOTW4-2013.

  • Gonnermann HM, Manga M (2003) Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426:432–435

    Google Scholar 

  • Gonnermann HM, Giachetti T, Fliedner C, Nguyen CT, Houghton BF, Crozier JA, Carey RJ (2017) Permeability during magma expansion and compaction: observations and experiments. J Geophys Res Solid Earth 122:9825–9848

    Google Scholar 

  • González-García D, Giordano D, Allabar A, Andrade FRD, Polo LA, Janasi VA, Lucchetti ACF, Hess K-U, De Campos C, Dingwell DB (2021) Retrieving dissolved H2O content from micro-Raman spectroscopy on nanolitized silicic glasses: application to volcanic products of the Paraná magmatic province, Brazil. Chem Geol 567:120058. https://doi.org/10.1016/j.chemgeo.2021.120058

    Article  Google Scholar 

  • Hajimirza S, Gonnermann HM, Gardner JE (2021) Reconciling bubble nucleation in explosive eruptions with geospeedometers. Nat Commun 12:1–8

    Google Scholar 

  • Hammer JE, Rutherford MJ (2002) An experimental study of decompression-induced crystallization in silicic melt. J Geophys Res 107:8–24

    Google Scholar 

  • Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380

    Google Scholar 

  • Harris PG, Kennedy WQ, Scarfe CM (1970) Volcanism versus plutonism— the effect of chemical composition. In: Newall G, Rast N (eds) Mechanism of igneous intrusion. Liverpool Geological Society, UK, pp 187–200

    Google Scholar 

  • Heap MJ, Farquharson JI, Wadsworth FB, Kolzenburg S, Russell JK (2015) Timescales for permeability reduction and strength recovery in densifying magma. Earth Planet Sci Lett 429:223–233

    Google Scholar 

  • Hebert V, Garing C, Luquot L, Pezard PA, Gouze P (2015) Multi-scale X-ray tomography analysis of carbonate porosity. Geol Soc Lond-Spec Publ 406:61–79

    Google Scholar 

  • Hess K-U, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300

    Google Scholar 

  • Hoblitt RP, Harmon RS (1993) Bimodal density distribution of cryptodome dacite from the 1980 eruption of Mt. St. Helens, Washington. Bull Volcanol 55:421–437

    Google Scholar 

  • Höche T, Mäder M, Bhattacharyya S, Henderson GH, Gemming T, Wurth R, Rüssel C, Avramov I (2011) ZrTiO4 crystallisation in nanosized liquid-liquid phase-separation droplets in glass-a quantitative XANES study. CrystEngComm 13:2550–2556

    Google Scholar 

  • Holland ASP, Watson IM, Phillips JC, Caricchi L (2011) Degassing processes during lava dome growth: insights from Santiaguito lava dome, Guatemala. J Volcanol Geotherm Res 202:153–166

    Google Scholar 

  • Hort M (1998) Abrupt change in magma liquidus temperature because of volatile loss or magma mixing: effects on nucleation, crystal growth and thermal history of the magma. J Petrol 39:1063–1076

  • Hughes EC, Buse B, Kearns SL, Blundy JD, Kilgour G, Mader HM, Brooker RA, Blazer B, Botcharnikov RE, Di Genova D, Almeev RR, Riker JM (2018) High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe. Am Mineral 103:1473–1486

    Google Scholar 

  • Hughes EC, Buse B, Kearns SL, Blundy JD, Mader HM, Carlo M (2019) Low analytical totals in EPMA of hydrous silicate glass due to sub-surface charging: obtaining accurate volatiles by difference. Chem Geol 505:48–56

    Google Scholar 

  • Hui HJ, Zhang YX, Xu ZJ, Del Gaudio P, Behrens H (2009) Pressure dependence of viscosity of rhyolitic melts. Geochim Cosmochim Acta 73:3680–3693

    Google Scholar 

  • Ichihara M, Kameda M (2004) Propagation of acoustic waves in a visco-elastic two-phase system: influences of the liquid viscosity and the internal diffusion. J Volcanol Geotherm Res 137:1–3

    Google Scholar 

  • Jarosewich E (2002) Smithsonian microbeam standards. J Res Nat Inst Stand Technol 107:681–685

    Google Scholar 

  • Johannes WJ, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, p 335

    Google Scholar 

  • Johnson ER, Wallace PJ, Cashman KV, Delgado-Granados H, Kent AJR (2008) Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth Planet Sci Lett 269:477–486

    Google Scholar 

  • Karlstrom L, Dunham EM (2016) Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma. J Fluid Mech 797:431–470

    Google Scholar 

  • Kleebusch E, Patzig C, Höche T, Rüssel C (2018) The evidence of phase separation droplets in the crystallization process of a Li2O-Al2O3-SiO2 glass with TiO2 as nucleating agent - an X-ray diffraction and (S)TEM-study supported by EDX-analysis. Ceram Int 44:2919–2926

    Google Scholar 

  • Kleest C, Webb SL, Fanara S (2020) Rheology of melts from the colli albani volcanic district (Italy): a case study. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-020-01720-1

    Article  Google Scholar 

  • Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100

    Google Scholar 

  • Kraynik AM (1988) Foam flows. Annu Rev Fluid Mech 20:325–357

    Google Scholar 

  • Kurzon I, Lyakhovsky V, Navon O, Chouet B (2011) Pressure waves in a supersaturated bubbly magma. Geophys J Int 187:421–438

    Google Scholar 

  • Kushnir AR, Martel C, Champallier R, Arbaret L (2017) In situ confirmation of permeability development in shearing bubble-bearing melts and implications for volcanic outgassing. Earth Planet Sci Lett 458:315–326

    Google Scholar 

  • Lamb OD, De Angelis S, Umakoshi K, Hornby AJ, Kendrick JE, Lavallée Y (2015) Cyclic fracturing during spine extrusion at Unzen volcano, Japan. Solid Earth 7:2109–2149

    Google Scholar 

  • Lavallée Y, Dingwell DB, Johnson JB, Cimarelli C, Hornby AJ, Kendrick JE, Von Aulock FW, Kennedy BM, Andrews BJ, Wadsworth FB, Rhodes E, Chigna G (2015) Thermal vesiculation during volcanic eruptions. Nature 528:544–547

    Google Scholar 

  • Lindoo A, Larsen JF, Cashman KV, Oppenheimer J (2017) Crystal controls on permeability development and degassing in basaltic andesite magma. Geol 45:831–834. https://doi.org/10.1130/G39157.1

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni DA, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sørensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms, recommendations of the international union of geological sciences, subcommission of the systematics of igneous rocks. Cambridge University Press (ISBN 0-521-66215-X)

    Google Scholar 

  • Lipman P, Banks N, Rhodes J (1985) Degassing-induced crystallization of basaltic magma and effects on lava rheology. Nature 317:604–607

    Google Scholar 

  • Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217

    Google Scholar 

  • Llewellin EW, Mader HM, Wilson SDR (2002) The rheology of a bubbly liquid. Proc R Soc London A 458:987–1016

    Google Scholar 

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158

    Google Scholar 

  • Mandeville CW, Carey S, Sigurdsson H (1996) Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. J Volcanol Geotherm Res 74:243–274

    Google Scholar 

  • Mandeville C, Webster J, Rutherford M, Taylor B, Timbal A, Faure K (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am Mineral 87:813–821

    Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78:85–98

    Google Scholar 

  • Martel C (2012) Eruption dynamics inferred from microlite crystallization experiments: application to plinian and dome-forming eruptions of Mt. Pelee (Martinique, Lesser Antilles). J Petrol 53:699–725

    Google Scholar 

  • Martel C, Iacono-Marziano G (2015) Timescales of bubble coalescence, outgassing, and foam collapse in decompressed rhyolitic melts. Earth Planet Sci Lett 412:173–185

    Google Scholar 

  • Martel C, Poussineau S (2007) Diversity of eruptive style inferred from the microlites of Mt. Pelée andesite (Martinique, Lesser Antilles). J Volcanol Geotherm Res 166:233–254

    Google Scholar 

  • Martel C, Schmidt B (2003) Decompression experiments as an insight into ascent rates of silicic magmas. Contrib Mineral Petrol 144:397–415

    Google Scholar 

  • Martula DS, Hasegawa T, Lloyd DR, Bonnecaze RT (2000) Coalescence-induced coalescence of inviscid droplets in a viscous fluid. J Colloid Interface Sci 232:241–253

    Google Scholar 

  • Matthews SJ, Gardeweg MC, Sparks RSJ (1997) The 1984 to 1996 cyclic activity of Lascar Volcano, northern Chile: cycles of dome growth, dome subsidence, degassing and explosive eruptions. Bull Volcanol 59:72–82

    Google Scholar 

  • McIntosh IM, Llewellin EW, Humphreys MCS, Nichols ARL, Burgisser A, Schipper CI, Larsen JF (2014) Distribution of dissolved water in magmatic glass records growth and resorption of bubbles. Earth Planet Sci Lett 401:1–11

    Google Scholar 

  • McKenzie DP, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Google Scholar 

  • Melnik O, Sparks RSJ (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41

    Google Scholar 

  • Melnik O, Lyakhovsky V, Shapiro NM, Galina N, Bergal-Kuvikas O (2020) Deep long period volcanic earthquakes generated by degassing of volatile-rich basaltic magmas. Nat Commun 11:3918. https://doi.org/10.1038/s41467-020-17759-4

    Article  Google Scholar 

  • Melson WG, O’Hearn T, Jarosewich E (2002) A data brief on the Smithsonian Abyssal volcanic glass data file. Geochem Geophys Geosyst. https://doi.org/10.1029/2001GC000249

    Article  Google Scholar 

  • Mollard E, Martel C, Bourdier J (2012) Decompression-induced crystallization in hydrated silica-rich melts: empirical models of experimental plagioclase nucleation and growth kinetics. J Petrol 53:1743–1766

    Google Scholar 

  • Moore G, Carmichael I (1998) The hydrous phase equilibira (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319

    Google Scholar 

  • Morgan GB, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81:1176–1185

    Google Scholar 

  • Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 67:526–538

    Google Scholar 

  • Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology 36:399–402

    Google Scholar 

  • Mueller S, Scheu B, Kueppers U, Spieler O, Richard D, Dingwell DB (2011) The porosity of pryoclasts as an indicator of volcanic explosivity. J Volcanol Geotherm Res 203:168–174

    Google Scholar 

  • Mujin M, Nakamura M (2014) A nanolite record of eruption style transition. Geology 42:611–614

    Google Scholar 

  • Mujin M, Nakamura M, Miyake A (2017) Eruption style and crystal size distributions: crystallization of groundmass nanolites in the 2011 Shinmoedake eruption. Am Mineral 102:2367–2380

    Google Scholar 

  • Namiki A, Manga M (2008) Transition between fragmentation and permeable outgassing of low viscosity magmas. J Volcanol Geotherm Res 169:48–60

    Google Scholar 

  • Nguyen CT, Gonnermann HM, Houghton BF (2014) Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geol 42:703–706. https://doi.org/10.1130/G35593.1

  • Nguyen CT, Gonnermann HM, Chen Y, Huber C, Maiorano AA, Gouldstone A, Dufek J (2013) Film drainage and the lifetime of bubbles. Geochem Geophys, Geosyst 14:3616–3631

    Google Scholar 

  • Noguchi S, Toramaru A, Nakada S (2008) Relation between microlite textures and discharge rate during the 1991–1995 eruptions at Unzen, Japan. J Volcanol Geotherm Res 175:141–155

    Google Scholar 

  • Ogburn SE, Loughlin SC, Calder ES (2012) DomeHaz: dome-forming eruptions database v2.4. On Vhub at https://vhub.org/groups/domedatabase.

  • Ogburn SE, Loughlin SC, Calder ES (2015) The association of lava dome growth with major explosive activity (VEI ≥ 4): DomeHaz, a global dataset. Bull Volcanol. https://doi.org/10.1007/s00445-015-0919-x

    Article  Google Scholar 

  • Okumura S, Nakamura M, Tsuchiyama A (2006) Shear-induced bubble coalescence in rhyolitic melts with low vesicularity. Geophys Res Lett 33:L20316. https://doi.org/10.1029/2006GL027347

    Article  Google Scholar 

  • Okumura S, Nakamura M, Nakano T, Uesugi K, Tsuchiyama A (2010) Shear deformation experiments on vesicular rhyolite: implications for brittle fracturing, degassing, and compaction of magmas in volcanic conduits. J Geophys Res 115:B06201. https://doi.org/10.1029/2009JB006904

    Article  Google Scholar 

  • Papale P (1999) Strain-induced magma fragmentation in explosive eruptions. Nature 397:425–428

    Google Scholar 

  • Petford N (2009) Which effective viscosity? Mineral Mag 73:167–191

    Google Scholar 

  • Phan-Thien N, Pham DC (1997) Differential multiphase models for polydispersed suspensions and particulate solids. J Non-Newton Fluid Mech 72:305–318

    Google Scholar 

  • Pistone M, Caricchi L, Ulmer P, Burlini L, Ardia P, Reusser E, Marone F, Arbaret L (2012) Deformation experiments of bubble- and crystal-bearing magmas: rheological and microstructural analysis. J Geophys Res. https://doi.org/10.1029/2011JB008986

    Article  Google Scholar 

  • Pistone M, Caricchi L, Ulmer P, Burlini L, Reusser E, Ardia P (2013) Rheology of volatile-bearing crystal mushes: mobilization vs. viscous death. Chem Geol 345:16–39

    Google Scholar 

  • Pistone M, Caricchi L, Fife JL, Mader K, Ulmer P (2015a) In situ X-ray tomographic microscopy observations of vesiculation of bubble-free and bubble-bearing magmas. Bull Volcanol. https://doi.org/10.1007/s00445-015-0992-1

    Article  Google Scholar 

  • Pistone M, Arzilli F, Dobson KJ, Cordonnier B, Reusser E, Ulmer P, Marone F, Whittington AG, Mancini L, Fife JL, Blundy JD (2015b) Gas-driven filter pressing in magmas: insights into in-situ melt segregation from crystal mushes. Geology 43:699–702

    Google Scholar 

  • Pistone M, Blundy JD, Brooker RA, EIMF (2016a) Textural and chemical consequences of interaction between hydrous mafic and felsic magmas: an experimental study. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-015-1218-4

    Article  Google Scholar 

  • Pistone M, Cordonnier B, Ulmer P, Caricchi L (2016b) Rheological flow laws for multiphase magmas: an empirical approach. J Volcanol Geotherm Res 321:158–170

    Google Scholar 

  • Pistone M, Whittington AG, Andrews BJ, Cottrell E (2017) Crystal-rich lava dome extrusion during vesiculation: an experimental study. J Volcanol Geotherm Res 347:1–14

    Google Scholar 

  • Polacci M, Baker DR, Bai LP, Mancini L (2008) Large vesicles record pathways of degassing at basaltic volcanoes. Bull Volcanol 70:1023–1029

    Google Scholar 

  • Proussevitch AA, Sahagian DL, Anderson AT (1993) Stability of foams in silicate melts. J Volcanol Geotherm Res 59:161–178

    Google Scholar 

  • Riker J, Blundy J, Rust A, Botcharnikov R, Humphreys M (2015a) Experimental phase equilibria of a Mount St. Helens rhyodacite: a framework for interpreting crystallization paths in degassing silicic magmas. Contrib Mineral Petrol 170:1–22

    Google Scholar 

  • Riker J, Cashman KV, Rust AC, Blundy JD (2015b) Experimental constraints on plagioclase crystallization during H2O- and H2O-CO2-saturated magma decompression. J Petrol 56:1967–1998

    Google Scholar 

  • Romine WL, Whittington AG (2015) A simple model for the viscosity of rhyolites as a function of temperature, pressure and water content. Geochim Cosmochim Acta 170:281–300

    Google Scholar 

  • Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res 116:B11202. https://doi.org/10.1029/2011JB008494

  • Rust AC, Cashman KV (2004) Permeability of vesicular silicic magma: inertial and hysteresis effects. Earth Planet Sci Lett 228:93–107

    Google Scholar 

  • Saar MO, Manga M (1999) Permeability-porosity relationship in vesicular basalts. Geophys Res Lett 26:111–114

    Google Scholar 

  • Saar MO, Manga M (2002) Continuum percolation threshold for randomly oriented soft-core prisms. Phys Rev E: Stat Nonlinear, Soft Matter Phys. https://doi.org/10.1103/PhysRevE.65.056131

    Article  Google Scholar 

  • Sahimi M (1994) Applications of percolation theory. Taylor and Francis, London, UK

    Google Scholar 

  • Schiavi F, Bolfan-Casanova N, Withers AC, Médard E, Laumonier M, Laporte D, Flaherty T, Gómez-Ulla A (2018) Water quantification in silicate glasses by Raman spectroscopy: correcting for the effects of confocality, density and ferric iron. Chem Geol 483:312–331

    Google Scholar 

  • Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive–effusive activity at Cordón Caulle (Chile, 2011–12): evidence from direct observations and pyroclast textures. J Volcanol Geotherm Res 262:25–37

    Google Scholar 

  • Sharp TG, Stevenson RJ, Dingwell DB (1996) Microlites and “nanolites” in rhyolitic glass: microstructural and chemical characterization. Bull Volcanol 57:631–640

    Google Scholar 

  • Shea T (2017) Bubble nucleation in magmas: a dominantly heterogeneous process? J Volcanol Geotherm Res 343:155–170

    Google Scholar 

  • Sherrod D, Scott W, Stauer P (2008) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, United States Geological Survey, Professional Paper, v. 1750.

  • Shields J, Mader HM, Pistone M, Caricchi L, Floess D, Putlitz B (2014) Strain-induced outgassing of three-phase magmas during simple shear. J Geophys Res. https://doi.org/10.1002/2014JB011111

    Article  Google Scholar 

  • Shields J, Mader HM, Caricchi L, Tuffen H, Mueller SP, Pistone M, Baumgartner L (2016) Unravelling textural heterogeneity in obsidian: shear-induced outgassing in the Rocche Rosse flow. J Volcanol Geotherm Res 310:137–158

    Google Scholar 

  • Simmons J, Elsworth D, Voight B (2005) Classification and idealized limit-equilibrium analyses of dome collapses at Soufrière Hills volcano, Montserrat, during growth of the first lava dome: November 1995–March 1998. J Volcanol Geotherm Res 139(3–4):241–258. https://doi.org/10.1016/j.jvolgeores.2004.08.009

  • Soulaine C, Gjetvaj F, Garing C, Roman S, Russian A, Gouze P, Tchelepi HA (2016) The impact of sub-resolution porosity of X-ray microtomography images on the permeability. Transp Porous Media 113:227–243

    Google Scholar 

  • Sparks RSJ (1997) Causes and consequences of pressurization in lava dome eruptions. Earth Planet Sci Lett 150:177–189

    Google Scholar 

  • Sparks RSJ, Pinkerton H (1978) Effect of degassing on rheology of basaltic lava. Nature 276:385–386

    Google Scholar 

  • Spieler O, Dingwell DB, Alidibirov M (2004) Magma fragmentation speed: an experimental determination. J Volcanol Geotherm Res 129:109–123

    Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory, 2nd edn. Taylor and Francis, London, UK, p 181

    Google Scholar 

  • Swanson SE, Naney MT, Westrich HR, Eichelberger JC (1989) Crystallization history of Obsidian Dome, Inyo Domes, California. Bull Volcanol 51:161–176

    Google Scholar 

  • Taisne B, Jaupart C (2008) Magma degassing and intermittent lava dome growth. Geophys Res Lett. https://doi.org/10.1029/2008GL035432

    Article  Google Scholar 

  • Takeuchi S, Nakashima S, Tomiya A, Shinohara H (2005) Experimental constraints on the low gas permeability of vesicular magma during decompression. Geophys Res Lett 32:L10312. https://doi.org/10.1029/2005GL022491

    Article  Google Scholar 

  • Tisato N, Quintal B, Chapman S, Podladchikov Y, Burg JP (2015) Bubbles attenuate elastic waves at seismic frequencies: first experimental evidence. Geophys Res Lett 42:3880–3887

    Google Scholar 

  • Truby JM, Mueller SP, Llewellin EW, Mader HM (2015) The rheology of three-phase suspensions at low bubble capillary number. Proc R Soc Lond A. https://doi.org/10.1098/rspa.2014.0557

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Mem 74:153

    Google Scholar 

  • van der Laan SR, Wyllie PJ (1993) Experimental interaction of granitic and basaltic magmas and implications for mafic enclaves. J Petrol 34:491–517

    Google Scholar 

  • Vasseur J, Wadsworth FB (2017) Sphere models for pore geometry and fluid permeability in heterogeneous magmas. Bull Volcanol 79:77–92

    Google Scholar 

  • Vasseur J, Wadsworth FB, Lavallée Y, Hess K-U, Dingwell DB (2013) Volcanic sintering: timescales of viscous densification and strength recovery. Geophys Res Lett. https://doi.org/10.1002/2013GL058105

    Article  Google Scholar 

  • Vasseur J, Wadsworth FB, Dingwell DB (2020) Permeability of polydisperse magma foam. Geology. https://doi.org/10.1130/G47094.1

    Article  Google Scholar 

  • Villeneuve N, Neuville DR, Boivin P, Bachèlery P, Richet P (2008) Magma crystallization and viscosity: a study of molten basalts from the Piton de la Fournaise volcano (La Réunion island). Chem Geol 256:242–251

    Google Scholar 

  • Vogt PR, Byerly GR (1976) Magnetic anomalies and basalt composition in the Juan de Fuca-Gorda ridge area. Earth Planet Sci Lett 33:185–300

    Google Scholar 

  • Wadsworth FB, Vasseur J, von Aulock FW, Hess K-U, Scheu B, Lavallée Y, Dingwell DB (2014) Nonisothermal viscous sintering of volcanic ash. J Geophys Res 119:8792–8804

    Google Scholar 

  • Wadsworth FB, Vasseur J, Scheu B, Kendrick JE, Lavallée Y, Dingwell DB (2016) Universal scaling of fluid permeability during volcanic welding and sediment diagenesis. Geology 44:219–222

    Google Scholar 

  • Walsh SDC, Saar MO (2008) Magma yield stress and permeability: insights from multiphase percolation theory. J Volcanol Geotherm Res 177:1011–1019

    Google Scholar 

  • Waters LE, Andrews BJ, Lange RA (2015) Rapid crystallization of plagioclase phenocrysts in silicic melts during fluid-saturated ascent: phase equilibrium and decompression experiments. J Petrol 56:981–1006

    Google Scholar 

  • Watkins J, Manga M, Huber C, Martin M (2009) Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles. Contrib Mineral Petrol 157:163–172

    Google Scholar 

  • Watts RB, Herd RA, Sparks RSJ, Young SR (2002) Growth patterns and emplacement of the andesitic lava dome at Soufrière hills volcano, Montserrat. Geol Soc Lond 21:115–152

    Google Scholar 

  • Whittington AG, Hellwig BM, Behrens H, Joachim B, Stechern A, Vetere F (2009) The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bull Volcanol 71:185–199

    Google Scholar 

  • Wieczorek M, Zuber M, Phillips R (2001) The role of magma buoyancy on the eruption of lunar basalts. Earth Planet Sci Lett 185:71–83

    Google Scholar 

  • Wolpert RL, Ogburn SE, Calder ES (2016) The longevity of lava dome eruptions. J Geophys Res 121:676–686

    Google Scholar 

  • Wright TL, Fiske RS (1971) Origin of the differentiated and hybrid lavas of Kilauea volcano, Hawaii. J Petrol 12:1–65

    Google Scholar 

  • Wright TL, Okamura RT (1977) Cooling and crystallization of tholeiitic basalt, 1965 Makaopuhi lava lake, Hawaii. USGS Professional Paper 1004: 1–78

  • Wright TL, Kinoshita WT, Peck DL (1968) March 1965 eruption of Kilauea volcano and the formation of Makaopuhi lava lake. J Geophys Res 73:3181–3205

    Google Scholar 

  • Wright HMN, Cashman KV, Rossi M, Cioni R (2007) Breadcrust bombs as indicators of vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69:281–300

    Google Scholar 

  • Wright HMN, Cashman KV, Gottesfeld EH, Roberts JJ (2009) Pore structure of volcanic clasts: measurements of permeability and electrical conductivity. Earth Planet Sci Lett 280:93–104

    Google Scholar 

  • Zandona A, Patzig C, Rüdinger B, Hochrein O, Deubener J (2019) TiO2(B) nanocrystals in Ti-doped lithium aluminosilicate glasses. J Non-Cryst Solids: X 2:100025. https://doi.org/10.1016/j.nocx.2019.100025

    Article  Google Scholar 

  • Zhang YX, Xu ZJ, Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from kinetic experiments, and a new viscosity model. Am Mineral 88:1741–1752

    Google Scholar 

  • Zhang C, Almeev RR, Hughes EC, Borisov A, Wolff E, Hofer HE, Botcharnikov RE, Koepke J (2018) Electron microprobe technique for the determination of iron oxidation state in silicate glasses. Am Mineral 103:1445–1454

    Google Scholar 

Download references

Acknowledgements

NSF EAR-1220051 to A.W., NSF EAR-1347248 to E.C., SNF PZ00P2_168166, PBEZP2_14922, P3000P2_154574, and UGA Presidential Funds to M.P., and ERC Advanced Grant CRITMAG to J.D. Blundy supported this research. We acknowledge: T. Gooding and A. Mansur (Smithsonian) for support during SEM analyses; T. Rose (Smithsonian), A. Trucco (University of Florida), C. Henderson (CAMECA) for support during EPMA analyses; Alberto Luisoni AG (Switzerland) and Nabaltec AG (Germany) for supplying quartz crystals and APYRAL 60CD used in the starting materials. The authors thank two anonymous reviewers for their insightul analysis of an earlier version of this contribution and G. Moore for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Pistone.

Additional information

Communicated by Gordon Moore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pistone, M., Formo, E., Whittington, A.G. et al. Direct nanoscale observations of degassing-induced crystallisation in felsic magmas. Contrib Mineral Petrol 177, 38 (2022). https://doi.org/10.1007/s00410-022-01900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01900-1

Keywords

Navigation