Skip to main content
Log in

Long or short silicic magma residence time beneath Hekla volcano, Iceland?

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Timescales of magma transfer and differentiation processes can be estimated when the magma differentiation mechanism is known. When conventional major and trace element analyses fail to distinguish between various processes of magma differentiation, isotope compositions can be useful. Lower Th isotope ratios in silicic relative to basaltic magmas at a given volcano could result from magma storage over a period of several tens of thousands of years, or if the differentiation process was fractional crystallization alone, or from crustal anatexis on a much shorter timescale. Recently mapped bimodal tephra layers from Mt. Hekla, Iceland, confirm lower (230Th/232Th) and higher Th/U in silicic versus mafic magmas. Higher Th/U has been taken to indicate either apatite fractionation or partial crustal melting. In situ trace element analysis of apatite and the enveloping glass in basaltic andesite, dacite and rhyolite was undertaken to examine its capacity to fractionate trace elements and their ratios. Both Th and U are compatible in apatite with a partition coefficient ratio DU/DTh of 1. Hence, apatite crystallization and separation from the melt has a negligible effect on Th/U in Hekla magmas. Partial melting of hydrothermally altered crust remains the preferred mechanism for producing silicic melt beneath Hekla. Ten to twenty percent partial melting of metabasaltic crust with 0.4–1.2 wt% H2O produces dacite magma with 4–6% water. Absence of low δ18O values in Hekla magmas compared to silicic magmas of the rift zones suggests mild hydration of the hydrothermally altered crust. Silicic magma formation, storage, differentiation and eruption at Hekla occurred over a timescale of less than a few centuries. Decreasing production of rhyolite and dacite during the Holocene lifetime of Hekla suggests changes in the crustal magma source and readjustment of the magma system with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Angiboust S, Harlov D (2017) Ilmenite breakdown and rutile-titanite stability in metagranitoids; natural observations and experimental results. Am Mineral 102:1696–1708. https://doi.org/10.2138/am-2017-6064

    Article  Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between Fe–Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Baldridge SW, McGetchin TR, Frey FA (1973) Magmatic evolution of Hekla, Iceland. Contrib Mineral Petrol 42:245–258

    Article  Google Scholar 

  • Bindeman I, Gurenko A, Carley T, Miller C, Martin E, Sigmarsson O (2012) Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24:227–232

    Article  Google Scholar 

  • Carley TL, Miller CF, Wooden JL, Bindeman IN, Barth AP (2011) Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Mineral Petrol 102:135–161

    Article  Google Scholar 

  • Chekol TA, Kobayashi K, Yokoyama T, Sakaguchi C, Nakamura E (2011) Timescales of magma differentiation from basalt to andesite beneath Hekla Volcano, Iceland: constraints from U-series disequilibria in lavas from the last quarter-millennium flows. Geochim Cosmochim Acta 75:256–283

    Article  Google Scholar 

  • Chen H et al (2013) Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth Planet Sci Let 369–370:34–42

    Article  Google Scholar 

  • Condomines M, Gauthier P-J, Sigmarsson O (2003) Timescales of magma chamber processes and dating of young volcanic rocks. Rev Mineral Geochem 52:125–174

    Article  Google Scholar 

  • Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:480–483

    Article  Google Scholar 

  • Cooper KM, Reid MR (2008) Uranium-series crystal ages. Rev Mineral Geochem 69:479–544

    Article  Google Scholar 

  • Costa F, Shea T, Ubide T (2020) Diffusion chronometry and the timescales of magmatic processes. Nat Rev Earth Environ. https://doi.org/10.1038/s43017-020-0038-x

    Article  Google Scholar 

  • Deng Z, Chaussidon M, Savage P, Robert F, Pik R, Moynier F (2018) Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks. PNAS 116:1132–1135. https://doi.org/10.1073/pnas.1809164116

    Article  Google Scholar 

  • Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:77–80

  • Geist D, Harpp K, Oswald P, Wallace P, Bindeman I, Christensen B (2021) Hekla revisited: fractionation of a magma body at historical timescales. J Petrol. https://doi.org/10.1093/petrology/egab001

    Article  Google Scholar 

  • Gudmundsdóttir ER, Larsen G, Eiríksson J (2011) Two new Icelandic tephra markers: the Hekla Ö tephra layer, 6060 cal. yr BP, and Hekla DH tephra layer, ~6650 cal. yr BP. Land-sea correlation of mid-Holocene tephra markers. Holocene 21:629–639. https://doi.org/10.1177/0959683610391313

    Article  Google Scholar 

  • Gunnarsson B, Marsh B, Taylor H Jr (1998) Generation of Icelandic rhyolites: silicic lavas from the Torfajökull central volcano. J Volcanol Geotherm Res 83:1–45

    Article  Google Scholar 

  • Hammouda T, Chantel J, Devidal J-L (2010) Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim Cosmochim Acta 74:7220–7235

  • Hattori K, Muehlenbachs K (1982) Oxygen isotope ratios of the Icelandic crust. J Geophys Res 87:6559–6565

    Article  Google Scholar 

  • Hawkesworth CJ, Blake S, Evans P, Hughes R, MacDonald R, Thomas LE, Turner SP, Zellmer G (2000) Time scales of crystal fractionation in magma chambers—integrating physical, isotopic and geochemical perspectives. J Petrol 41:991–1006

    Article  Google Scholar 

  • Ibañez-Mejia M, Tissot FLH (2019) Extreme Zr stable isotope fractionation during magmatic fractional crystallization. Sci Adv 5:eaax8648

    Article  Google Scholar 

  • Inglis EC, Moynier F, Creech J, Deng Z, Day JMD, Teng F-Z, Bizzarro M (2019) Isotopic fractionation of zirconium during magmatic differentiation and the stable isotope composition of the silicate Earth. Geochim Cosmochim Acta 250:311–323

    Article  Google Scholar 

  • Jakobsson SP (1979) Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Nat Isl 26:1–103

    Google Scholar 

  • Jónasson K (2007) Silicic volcanism in Iceland: composition and distribution within the active volcanic zones. J Geodyn 43:101–117

    Article  Google Scholar 

  • Jónsson DF, Gudmundsdóttir ER, Larsen G, Óladóttir B, Erlendsson E, Eddudóttir S, Sigmarsson O (2020) The multi-component Hekla Ö tephra, Iceland: a complex widespread mid-Holocene key tephra layer. J Quat Sci 35:1–12. https://doi.org/10.1002/jqs.3180

    Article  Google Scholar 

  • Klemme S, Dalpé C (2003) Trace-element partitioning between apatite and carbonatite melt. Am Mineral 88:639–646

    Article  Google Scholar 

  • Klemme S, Prowatke S, Hametner K, Gunther D (2005) Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochim Cosmochim Acta 69:2361–2371

    Article  Google Scholar 

  • Klemme S, Gunther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263

    Article  Google Scholar 

  • Kokfelt TF, Hoernle K, Hauff F, Fiebig J, Werner R, Garbe-Schönberg D (2006) Combined trace element and Pb-Nd–Sr-O isotope evidence for recycled oceanic crust (upper and lower) in the iceland mantle plume. J Petrol 47:1705–1749

  • Kokfelt TF, Hoernle K, Lundstrom C, Hauff F, van den Bogaard C (2009) Time-scales for magmatic differentiation at the Snaefellsjökull central volcano, western Iceland: constraints from U–Th–Pa–Ra disequilibria in post-glacial lavas. Earth Planet Sci Lett 73:1120–1144

    Google Scholar 

  • Kuritani T, Yokoyama T, Kitagawa H, Kobayashi K, Nakamura E (2011) Geochemical evolution of historical lavas from Askja Volcano, Iceland: implications for mechanisms and timescales of magmatic differentiation. Geochim Cosmochim Acta 75:570–587

    Article  Google Scholar 

  • Larsen G, Thorarinsson S (1977) H4 and other acid Hekla tephra layers. Jökull 27:28–46

    Google Scholar 

  • Larsen G, Dugmore A, Newton A (1999) Geochemistry of historical-age silicic tephras in Iceland. Holocene 9:463–471

    Article  Google Scholar 

  • Larsen G, Róbertsdóttir BG, Óladóttir BA, Eiríksson J (2019) A shift in eruption mode of Hekla volcano, Iceland, 3000 years ago: two-coloured Hekla tephra series, characteristics, dispersal and age. J Quat Sci 35:1–12. https://doi.org/10.1002/jqs.3164

    Article  Google Scholar 

  • Lucic G, Berg A-S, Stix J (2016) Water-rich and volatile-undersaturated magmas at Hekla volcano, Iceland. Geochem Geophys Geosyst. https://doi.org/10.1002/2016GC006336

    Article  Google Scholar 

  • Martin E, Sigmarsson O (2007) Geographical variations of silicic magma origin in Iceland: the case of Torfajökull, Ljósufjöll and Snæfellsjökull volcanoes. Contrib Mineral Petrol 153:593–605

    Article  Google Scholar 

  • Meyer PS, Sigurdsson H, Schilling JG (1985) Petrological and geochemical variations along Iceland’s Neovolcanic zones. J Geophys Res 90:10043–10072

    Article  Google Scholar 

  • Moune S, Sigmarsson O, Thordarson Th, Gauthier P-J (2007) Recent volatile evolution in the magmatic system of Hekla volcano, Iceland. Earth Planet Sci Lett 255:373–389

    Article  Google Scholar 

  • Muehlenbachs K, Anderson AT, Sigvaldason GE (1974) Low 180 basalts from Iceland. Geochim Comochim Acta 38:577–588

    Article  Google Scholar 

  • Nicholson H, Condomines M, Fitton JD, Fallick AE, Grönvold K, Rogers G (1991) Geochemical and isotopic evidence for crustal assimilation beneath Krafla, Iceland. J Petrol 32:1005–1020

    Article  Google Scholar 

  • Óskarsson N, Sigvaldason GE, Steinthórsson S (1982) A dynamic model of rift zone petrogenesis and regional petrology of Iceland. J Petrol 23:28–74

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Storm S, Mironov N, van den Bogaard C, Botcharnikov R (2012) H2O-rich melt inclusions in fayalitic olivine from Hekla volcano: implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland. Earth Planet Sci Lett 357(358):337–346

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527

    Article  Google Scholar 

  • Prytulak J, Brett A, Webb M, Plank T, Rehkämper M, Savage PS, Woodhead J (2017a) Thallium elemental behavior and stable isotope fractionation during magmatic processes. Chem Geol 448:71–83

    Article  Google Scholar 

  • Prytulak J, Sossi PA, Halliday AN, Plank T, Savage PS, Woodhead JD (2017b) Stable vanadium isotopes as a redox proxy in magmatic systems? Geochem Perspect Lett 3:75–84

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120. https://doi.org/10.2138/rmg.2008.69.3

    Article  Google Scholar 

  • Reagan MK, Sims KW, Erich J, Thomas RB, Cheng H, Edwards RL, Layne G, Ball L (2003) Time-scales of differentiation from mafic parents to rhyolite in North American continental arcs. J Petrol 44:1703–1726

    Article  Google Scholar 

  • Rose-Koga EF, Sigmarsson O (2008) B–O–Th isotope systematics in Icelandic tephra. Chem Geol 255:454–462

    Article  Google Scholar 

  • Saemundsson K (1979) Outline of the geology of Iceland. Jökull 29:7–28

    Google Scholar 

  • Savage PS, Georg RB, Williams RB, Burton KW, Halliday AN (2011) Silicon isotope fractionation during magmatic differentiation. Geochim Cosmochim Acta 75:6124–6139

    Article  Google Scholar 

  • Schattel N, Portnyagin M, Golowin R, Hoernle K, Bindeman I (2014) Contrasting conditions of rift and off-rift silicic magma origin on Iceland. Geophys Res Lett 41:5813–5820

    Article  Google Scholar 

  • Schuessler JA, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotopes in volcanic rocks from Hekla, Iceland—implications for stable isotope fractionation during magma differentiation. Chem Geol 258:78–91

    Article  Google Scholar 

  • Selbekk RS, Trønnes RG (2007) The 1362 AD Öræfajökull eruption, Iceland: petrology and geochemistry of large-volume homogeneous rhyolite. J Volcanol Geotherm Res 160:42–58

  • Sigmarsson O, Hémond C, Condomines M, Fourcade S, Óskarsson N (1991) Origin of silicic magma in Iceland revealed by Thorium isotopes. Geology 19:621–624

    Article  Google Scholar 

  • Sigmarsson O, Condomines M, Fourcade S (1992) A detailed Th, Sr, and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib Mineral Petrol 112:20–34

    Article  Google Scholar 

  • Sigmarsson O, Vlastelic I, Andreasen R, Bindeman I, Devidal J-L, Moune S, Keiding JK, Larsen G, Höskuldsson A, Thórdarson T (2011) Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2:271–281

    Article  Google Scholar 

  • Sigurdsson H (1977) Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer. Nature 269:25–28

    Article  Google Scholar 

  • Sigvaldason GE (1974) The petrology of Hekla and origin of silicic rocks in Iceland. Eruption of Hekla 1947–1948. Soc Sci Isl 5:1–44

    Google Scholar 

  • Stefánsson A, Hilton DR, Sveinbjörnsdóttir AE, Torssander P, Heinemeier J, Barnes JD, Ono S, Halldórsson SA, Fiebig J, Arnórsson S (2017) Isotope systematics of Icelandic thermal fluids. J Volcanol Geotherm Res 337:146–164. https://doi.org/10.1016/j.jvolgeores.2017.02.006

    Article  Google Scholar 

  • Stelten ME, Cooper KM, Vazquez JA, Calvert AT, Glessner JJG (2015) Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry. J Petrol 56:1607–1642

    Article  Google Scholar 

  • Sverrisdóttir G (2007) Hybrid magma generation preceding Plinian silicic eruptions at Hekla, Iceland: evidence from mineralogy and chemistry of two zoned deposits. Geol Mag 144:643–659. https://doi.org/10.1017/S0016756807003470

    Article  Google Scholar 

  • Thorarinsson S (1967) The eruptions of Hekla in historical times. In: Einarsson T, Kjartansson G, Thorarinsson S (eds) The eruption of Hekla 1947–48. I. Societas Scientiarum Islandica, Reykjavík, pp 1–177

    Google Scholar 

  • Thy P, Beard JS, Lofgren GE (1990) Experimental constraints on the origin of Icelandic rhyolites. J Geol 98:417–421

    Article  Google Scholar 

  • Tomlinson EL, Thórdarson T, Müller W, Thirlwall M, Menzies MA (2010) Microanalysis of tephra by LA-ICP-MS—strategies, advantages and limitations assessed using the Thorsmörk ignimbrite (Southern Iceland). Chem Geol 279:73–89. https://doi.org/10.1016/j.chemgeo.2010.09.013

    Article  Google Scholar 

  • Tuller-Ross B, Savage PS, Chen H, Wang K (2019) Potassium isotope fractionation during magmatic differentiation. Chem Geol 525:37–45

  • Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Article  Google Scholar 

  • Weber G, Castro JM (2017) Phase petrology reveals shallow magma storage prior to large explosive silicic eruptions at Hekla volcano, Iceland. Earth Planet Sci Lett 466:168–180

    Article  Google Scholar 

  • Xiong XL, Adam J, Green TH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol 218:339–359

    Article  Google Scholar 

  • Yang J et al (2015) Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland. Geochim Cosmochim Acta 162:126–136

    Article  Google Scholar 

  • Zambardi T, Lundstrom CC, Li X, Michael McCurry M (2014) Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation. Earth Planet Sci Lett 405:169–179

  • Zellmer GF, Rubin KH, Grönvold K, Jurado-Chichay Z (2008) On the recent bimodal magmatic processes and their rates in the Torfajökull–Veidivötn area, Iceland. Earth Planet Sci Lett 269:387–397

    Article  Google Scholar 

Download references

Acknowledgements

Late Sveinn Jakobsson and Kristján Jónasson at the Icelandic Institute of Natural History supplied a few lava samples. Claire Fonquernie, Séverine Moune and Baptiste Haddadi assisted with the mineral separation, Eniko Bali helped with the mineralogy, Gudmundur Gudfinnsson was in charge of the EPMA at University of Iceland, Krzysztof Suchorski and Benbakkar Mhammed made new whole-rock trace and major element analyses, respectively. Fran van Wyk de Vries corrected the English, anonymous reviewer, Denis Geist, Georg Zellmer and the editor, Othmar Müntener, made several constructive comments. All these contributions are gratefully acknowledged. Field work was financed by the bilateral “Jules Verne” programme between France and Iceland and the “ClerVolc laboratoire d’excellence” programme of Agent Nationale de Recherche, France, and Rannis, the Icelandic Centre for Research, both of which funded the analytical work. This Laboratory of Excellence ClerVolc contribution #520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olgeir Sigmarsson.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Methods and analytical technics (PDF 673 kb)

410_2021_1883_MOESM2_ESM.xlsx

Analytical results (Major and trace element concentrations, U and Th concentrations by isotope dilution and (230Th/232Th) measurement results) (XLSX 60 kb)

Harker diagrams. Trace element plots (PDF 311 kb)

Measured partition coefficients (XLSX 21 kb)

In-situ trace element results (XLSX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigmarsson, O., Bergþórsdóttir, I.A., Devidal, JL. et al. Long or short silicic magma residence time beneath Hekla volcano, Iceland?. Contrib Mineral Petrol 177, 13 (2022). https://doi.org/10.1007/s00410-021-01883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01883-5

Keywords

Navigation