Skip to main content

Advertisement

Log in

Crustal storage and ascent history of the Mt. Shasta primitive magnesian andesite: implications for arc magma crustal flux rates

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Primitive arc magmas provide our closest glimpse of the original mantle-derived magmas that produce the more ubiquitous andesites and dacites found in subduction zones and that ultimately construct Earth’s continental crust. This study examines the crustal storage and ascent history of the Mt. Shasta primitive magnesian andesite (PMA), a demonstrated parent magma for the voluminous mixed andesites erupted at Mt. Shasta. Our petrographic and geochemical observations of the PMA identify a mid-crustal magma mixing event recorded in multiple populations of reversely zoned clinopyroxene and orthopyroxene phenocrysts. Thermobarometric calculations conducted as part of this study and prior phase equilibrium experiments (Grove et al., Contrib Miner Petrol 145:515–533, 2003; Krawczynski et al., Contrib Miner Petrol 164:317–339, 2012) suggest the PMA experienced storage, mixing, and subsequent crystallization at ~ 500 MPa and ~ 975 °C. Modeling of Fe–Mg interdiffusion between the rims and cores of the reversely zoned pyroxenes suggests this mixing event and the resulting crystal rim growth occurred less than 10 years prior to eruption (\({2.9}_{-2.2}^{+6.4}\)). Ascent from 500 MPa (~ 15 km) during the calculated diffusion timescales suggests minimum crustal transit rates of ~ 170 MPa (~ 5 km)/year and cooling rates of ~ 5–7 °C/km, consistent with conductive cooling models. This ascent rate is slower than the handful of previously documented trans-crustal magmatic ascent rates and significantly slower than syn-eruptive decompression rates. If this behavior is representative, ~ the 10% mafic magmas erupted as part of the modern Mt. Shasta edifice fluxed through the crust within decades. Coupled with a review of the U–Th–Ra residence times for Shasta andesites to dacites, we suggest that crustal magma flux and assembly beneath modern Mt. Shasta occurred in discrete pulses that occupy a minority of the 700 k.y. period of edifice construction. The results of this study thus constrain the pre-eruptive history and ascent characteristics of a hydrous primitive arc magmas in the upper crust between their shallowest storage region in the mid-crust and volatile exsolution and provide constraints on crustal magma flux beneath continental arc volcanoes. Should future earthquake swarms indicative of magma movement in the middle to upper crust occur beneath Shasta, the results presented here also provide the first estimates of the possible magma ascent rates and the time intervals that could accompany related magma ascent to eruption at Mt. Shasta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allan AM, Mavko G (2013) The effect of adsorption and Knudsen diffusion on the steady-state permeability of microporous rocks. Geophysics 78(2):D75–D83

    Google Scholar 

  • Baker MB, Grove TL, Price R (1994) Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contrib Mineral Petrol 118(2):111–129

    Google Scholar 

  • Barr J, Grove TL, Elkins-Tanton L (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive melt: comment and reply: comment. Geology 35(1):e147–e147

    Google Scholar 

  • Barth A, Newcombe M, Plank T, Gonnermann H, Hajimirza S, Soto GJ et al (2019) Magma decompression rate correlates with explosivity at basaltic volcanoes—constraints from water diffusion in olivine. J Volcanol Geothermal Res 387:106664

    Google Scholar 

  • Blakely RJ, Jachens RC, Simpson RW, Couch RW (1985) Tectonic setting of the southern Cascade Range as interpreted from its magnetic and gravity fields. Geol Soc Am Bull 96(1):43–48

    Google Scholar 

  • Blatter DL, Carmichael IS (1998) Hornblende peridotite xenoliths from central Mexico reveal the highly oxidized nature of subarc upper mantle. Geology 26(11):1035–1038

    Google Scholar 

  • Cannata A, Di Grazia G, Giuffrida M, Gresta S, Palano M, Sciotto M et al (2018) Space-time evolution of magma storage and transfer at Mt. Etna Volcano (Italy): the 2015–2016 Reawakening of Voragine Crater. Geochem Geophys Geosyst 19(2):471–495

    Google Scholar 

  • Cherniak DJ, Dimanov A (2010) Diffusion in pyroxene, mica and amphibole. Rev Mineral Geochem 72(1):641–690

    Google Scholar 

  • Christiansen RL, Kleinhampl FJ, Blakely RJ, Tuchek ET, Johnson FL, Conyac MD (1977) Resource appraisal of the Mt. Shasta wilderness study area, Siskiyou County, California (No. USGS-OFR-77-250). Geological Survey, Menlo Park, CA (USA)

  • Christiansen RL, Calvert AT, Champion DE, Gardner CA, Fierstein JE, Vazquez JA (2020) The remarkable volcanism of Shastina, a stratocone segment of Mount Shasta, California. Geosphere 16(5):1153–1178

    Google Scholar 

  • Conway CE, Chamberlain KJ, Harigane Y, Morgan DJ, Wilson CJN (2020) Rapid assembly of high-Mg andesites and dacites by magma mixing at a continental arc stratovolcano. Geology 48(10):1033–1037

    Google Scholar 

  • Costa F, Morgan D (2011) Time constraints from chemical equilibration in magmatic crystals. Timescales of magmatic processes: from core to atmosphere. Wiley, Chichester, pp 125–159

    Google Scholar 

  • Costa F, Shea T, Ubide T (2020) Diffusion chronometry and the timescales of magmatic processes. Nat Rev Earth Environ 1(4):201–214

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80

    Google Scholar 

  • Dohmen R, Ter Heege JH, Becker HW, Chakraborty S (2016) Fe-Mg interdiffusion in orthopyroxene. Am Miner 101(10):2210–2221

    Google Scholar 

  • Embley RW, Wilson DS (1992) Morphology of the Blanco transform fault zone-NE Pacific: implications for its tectonic evolution. Mar Geophys Res 14(1):25–45

    Google Scholar 

  • Ewert JW, Diefenbach AK, Ramsey DW (2018) 2018 update to the US Geological Survey national volcanic threat assessment (No. 2018-5140). US Geological Survey

  • Fabbrizio A, Schmidt MW, Günther D, Eikenberg J (2009) Experimental determination of Ra mineral/melt partitioning for feldspars and 226Ra-disequilibrium crystallization ages of plagioclase and alkali-feldspar. Earth Planet Sci Lett 280(1–4):137–148

    Google Scholar 

  • Ferguson DJ, Gonnermann HM, Ruprecht P, Plank T, Hauri EH, Houghton BF, Swanson DA (2016) Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments. Bull Volcanol 78(10):71

    Google Scholar 

  • Fuis GS, Zucca JJ, Mooney WD, Milkereit B (1987) A geologic interpretation of seismic-refraction results in northeastern California. Geol Soc Am Bull 98(1):53–65

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York

    Google Scholar 

  • Green NL, Harry DL (1999) On the relationship between subducted slab age and arc basalt petrogenesis, Cascadia subduction system, North America. Earth Planet Sci Lett 171(3):367–381

    Google Scholar 

  • Griscom A (1980) Cascade range and Modoc plateau. Bull Calif Div Mines Geol 205:36–38

    Google Scholar 

  • Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H 2 O- rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396

    Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145(5):515–533

    Google Scholar 

  • Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H 2 O-rich mantle melts. Contrib Mineral Petrol 148(5):542–565

    Google Scholar 

  • Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Ann Rev Earth Planet Sci 40:413–439. https://doi.org/10.1146/annurev-earth-042711-105310

    Article  Google Scholar 

  • Hawkesworth C, George R, Turner S, Zellmer G (2004) Time scales of magmatic processes. Earth Planet Sci Lett 218(1–2):1–16

    Google Scholar 

  • Hildreth W (2007) Quaternary magmatism in the Cascades—geologic perspectives. Professional Papers of the United States Geological Survey, 1744.

  • Hollyday AE, Leiter SH, Walowski KJ (2020) Pre-eruptive storage, evolution, and ascent timescales of a high-Mg basaltic andesite in the southern Cascade Arc. Contrib Miner Petrol 175(9):1–21

    Google Scholar 

  • Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308(1–2):11–22

    Google Scholar 

  • Kahl M, Chakraborty S, Costa F, Pompilio M, Liuzzo M, Viccaro M (2013) Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bull Volcanol 75(2):692

    Google Scholar 

  • Kelemen PB, Yogodzinski G (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive melt: comment and reply: comment. Geology 35(1):e149–e150

    Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2013) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem 3:659

    Google Scholar 

  • Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H 2 O content, and oxygen fugacity. Contrib Miner Petrol 164(2):317–339

    Google Scholar 

  • Krimer D, Costa F (2017) Evaluation of the effects of 3D diffusion, crystal geometry, and initial conditions on retrieved time-scales from Fe–Mg zoning in natural oriented orthopyroxene crystals. Geochim Cosmochim Acta 196:271–288

    Google Scholar 

  • Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51(7):1571–1595

    Google Scholar 

  • Lloyd AS, Ruprecht P, Hauri EH, Rose W, Gonnermann HM, Plank T (2014) NanoSIMS results from olivine-hosted melt embayments: magma ascent rate during explosive basaltic eruptions. J Volcanol Geoth Res 283:1–18

    Google Scholar 

  • Mangan M, Ball J, Wood N, Jones JL, Peters J, Abdollahian N et al (2019) California’s exposure to volcanic hazards (No. 2018-5159). US Geological Survey

  • McKenzie D (2000) Constraints on melt generation and transport from U-series activity ratios. Chem Geol 162(2):81–94

    Google Scholar 

  • Müller T, Dohmen R, Becker HW, Ter Heege JH, Chakraborty S (2013) Fe–Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe–Mg exchange geothermometers. Contrib Miner Petrol 166(6):1563–1576

    Google Scholar 

  • Mutch EJ, Maclennan J, Shorttle O, Edmonds M, Rudge JF (2019) Rapid transcrustal magma movement under Iceland. Nat Geosci 12(7):569–574

    Google Scholar 

  • Myers ML, Wallace PJ, Wilson CJN, Watkins JM, Liu Y (2018) Ascent rates of rhyolitic magma at the onset of three caldera-forming eruptions. Am Mineral 103:952–965. https://doi.org/10.2138/am-2018-6225

    Article  Google Scholar 

  • Myers ML, Wallace PJ, Wilson CJN (2019) Inferring magma ascent timescales and reconstructing conduit processes in explosive rhyolitic eruptions using diffusive losses of hydrogen from melt inclusions. J Volcanol Geothermal Res 369:95–112. https://doi.org/10.1016/j.jvolgeores.2018.11.009

    Article  Google Scholar 

  • Pankhurst MJ, Morgan DJ, Thordarson T, Loughlin SC (2018) Magmatic crystal records in time, space, and process, causatively linked with volcanic unrest. Earth Planet Sci Lett 493:231–241

    Google Scholar 

  • Petrone CM, Bugatti G, Braschi E, Tommasini S (2016) Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics. Nat Commun 7:12946

    Google Scholar 

  • Pioli L, Azzopardi BJ, Cashman KV (2009) Controls on the explosivity of scoria cone eruptions: magma segregation at conduit junctions. J Volcanol Geoth Res 186(3–4):407–415

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Google Scholar 

  • Quick JE (1981) Petrology and petrogenesis of the Trinity peridotite, an upper mantle diapir in the eastern Klamath Mountains, northern California. J Geophys Res Solid Earth 86(B12):11837–11863

    Google Scholar 

  • Rae AS, Edmonds M, Maclennan J, Morgan D, Houghton B, Hartley ME, Sides I (2016) Time scales of magma transport and mixing at Kīlauea Volcano Hawai’i. Geology 44(6):463–466

    Google Scholar 

  • Rasmussen DJ, Plank TA, Roman DC, Power JA, Bodnar RJ, Hauri EH (2018) When does eruption run-up begin? Multidisciplinary insight from the 1999 eruption of Shishaldin volcano. Earth Planet Sci Lett 486:1–14

    Google Scholar 

  • Rubin AE, Cooper KM, Till CB, Kent AJ, Costa F, Bose M et al (2017) Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356(6343):1154–1156

    Google Scholar 

  • Ruprecht P, Plank T (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500(7460):68

    Google Scholar 

  • Ruscitto DM, Wallace PJ, Johnson ER, Kent AJR, Bindeman IN (2010) Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett 298(1–2):153–161

    Google Scholar 

  • Ruscitto DM, Wallace PJ, Kent AJR (2011) Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: implications for the formation of high-Mg andesites. Contrib Mineral Petrol 162(1):109–132

    Google Scholar 

  • Saunders K, Blundy J, Dohmen R, Cashman K (2012) Linking petrology and seismology at an active volcano. Science 336(6084):1023–1027

    Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635. https://doi.org/10.1016/0012-821X(93)90107-K

    Article  Google Scholar 

  • Shamloo HI, Till CB (2019) Decadal transition from quiescence to supereruption: petrologic investigation of the Lava Creek Tuff, Yellowstone Caldera, WY. Contrib Mineral Petrol 174(4):1–18

    Google Scholar 

  • Streck MJ, Leeman WP (2018) Petrology of “Mt. Shasta” high-magnesian andesite (HMA): a product of multi-stage crustal assembly. Am Mineral J Earth Planet Mater 103(2):216–240

    Google Scholar 

  • Streck MJ, Leeman WP, Chesley JT (2007) High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive melt: comment and reply: reply. Geology 35(1):e148–e148

    Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183(1–2):73–90

    Google Scholar 

  • Till CB, Grove TL, Carlson RW, Donnelly-Nolan JM, Fouch MJ, Wagner LS, Hart WK (2013) Depths and temperatures of <10.5 Ma mantle melting and the lithosphere-asthenosphere boundary below southern Oregon and northern California. Geochem Geophys Geosyst 14:864–879. https://doi.org/10.1002/ggge.20070

    Article  Google Scholar 

  • Till CB, Vazquez JA, Boyce JW (2015) Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology 43(8):695–698

    Google Scholar 

  • Till CB, Kent AJR, Abers GA, Janiszewski HA, Gaherty JB, Pitcher BW (2019) The causes of spatiotemporal variations in erupted fluxes and compositions along a volcanic arc. Nat Commun 10:1–12

    Google Scholar 

  • van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth‐dependent flux of H2O from subducting slabs worldwide. J Geophys Res Solid Earth 116:B01401. https://doi.org/10.1029/2010JB007922

    Article  Google Scholar 

  • Volpe AM (1992) 238U-230Th-226Ra disequilibirium in young Mt. Shasta andesites and dacites. J Volcanol Geoth Res 53(1–4):227–238

    Google Scholar 

  • Walowski KJ, Wallace PJ, Hauri EH, Wada I, Clynne MA (2015) Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat Geosci 8:404–408. https://doi.org/10.1038/ngeo2417

    Article  Google Scholar 

  • Wende AM, Johnson CM, Beard BL (2015) Tracing changes in mantle and crustal influences in individual cone-building stages at Mt. Shasta using U-Th and Sr isotopes. Earth Planet Sci Lett 428(C):11–21

    Google Scholar 

Download references

Acknowledgements

This research was supported by an NSF CAREER Grant awarded to C. B. Till (EAR 1654584). Special thanks to T.L. Grove for mentorship in the field work, A. Wittman for assistance with the EPMA at ASU, the Washington State Geoanalytical Lab for geochemical analysis, and Spectrum Petrographics for thin section preparation. Samples for this study were collected from the Shasta-Trinity and Modoc National Forests, the ancestral tribal lands of the Shasta and Modoc peoples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Phillips.

Additional information

Communicated by Mark S Ghiorso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 725 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, M., Till, C.B. Crustal storage and ascent history of the Mt. Shasta primitive magnesian andesite: implications for arc magma crustal flux rates. Contrib Mineral Petrol 177, 9 (2022). https://doi.org/10.1007/s00410-021-01853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01853-x

Keywords

Navigation