Skip to main content

Rapid transition from MORB-type to SSZ-type oceanic crust generation following subduction initiation: insights from the mafic dikes and metamorphic soles in the Pozantı-Karsantı ophiolite, SE Turkey

Abstract

The Pozantı-Karsantı ophiolite is one of the well-preserved supra-subduction-zone oceanic lithosphere slices. It offers a unique opportunity to study oceanic crust formation, and to specify subduction initiation processes of the Inner Tauride ocean in the Neo-Tethyan subduction system. The Pozantı-Karsantı ophiolite is tectonically underlain by a subophiolitic metamorphic sole and mélanges. The metamorphic sole is mostly amphibolites that are enriched in light rare earth elements and large-ion lithophile elements, low εNd(t) values (+ 5.4 to + 8.3) and high 207Pb/204Pb ratios, suggesting an OIB-like geochemical affinity. Secondary ion mass spectrometry (SIMS) zircon and titanite U–Pb ages reveal a protolith age at ~ 122.2 ± 1.3 Ma and metamorphic age at 92–90 Ma for the amphibolites. Gabbro and diabase dikes intruded the metamorphic sole rocks and ophiolitic units at ~ 91 to 90 Ma. Their elemental and Sr–Nd–Pb isotopic characteristics indicate a MORB-like mantle source, different from subduction fluid-altered dikes formed at 86.9 ± 3.1 Ma. The temporal-geochemical sequence therefore suggests that the intra-oceanic subduction initiated at 91.9 ± 0.8 Ma within an older lithosphere (> 122 Ma) of the Inner Tauride ocean. Incipient subduction led to forearc (ultra-)slow-spreading seafloor with mafic dikes of 91–90 Ma. The fast switch from MORB- to SSZ-type oceanic spreading might have occurred in less than 3 Myr and marks the inception of a mature subduction zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

source as discussed by Turner et al. (2012). The fields for different metasomatic processes in b are after La Flèche et al. (1998) and references therein. The melt curves in c were calculated with different starting materials (garnet lherzolite, garnet–spinel lherzolite and spinel lherzolite) using the non-modal batch melting equations of Shaw (1970)

Fig. 9
Fig. 10
Fig. 11

References

  1. Agard P, Yamato P, Soret M, Prigent C, Guillot S, Plunder A, Dubacq B, Chauvet A, Monié P (2016) Plate interface rheological switches during subduction infancy: control on slab penetration and metamorphic sole formation. Earth Planet Sci Lett 451:208–220

    Article  Google Scholar 

  2. Avcı E, İbrahim U, Akmaz RM, Saka S (2016) Ophiolitic chromitites from the Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, Southern Turkey): implication for crystallization from a fractionated boninitic melt. Ore Geol Rev 90:166–183

    Article  Google Scholar 

  3. Ben Othman D, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94:1–21

    Article  Google Scholar 

  4. Boudier F, Ceuleneer G, Nicolas A (1988) Shear zones, thrusts and related magmatism in the Oman ophiolite: Initiation of thrusting on an oceanic ridge. Tectonophysics 151:275–296

    Article  Google Scholar 

  5. Buck WR, Lavier LL, Poliakov ANB (2005) Modes of faulting at mid-ocean ridges. Nature 434:719–723

    Article  Google Scholar 

  6. Casey JF, Dewey JF (1984) Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres—implications for ophiolitic geology and obduction. Geol Soc Lond Spec Publ 13:269–290

    Article  Google Scholar 

  7. Çelik ÖF (2007) Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey): implications for OIB-type magma generation following slab break-off. Geol Mag 144:849–866

    Article  Google Scholar 

  8. Çelik ÖF, Delaloye M, Feraud G (2006) Precise 40Ar–39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geol Mag 143:213–227

    Article  Google Scholar 

  9. Çelik ÖF, Marzoli A, Marschik R,  Chiaradia M, Neubauer F, Öz İ (2011) Early–Middle Jurassic intra-oceanic subduction in the İzmir-Ankara-Erzincan Ocean Northern Turkey. Tectonophysics 509:120–134 

    Article  Google Scholar 

  10. Chen C, Su BX, Jing JJ, Xiao Y, Lin W, Chu Y, Liu X, Bai Y (2018) Geological records of subduction initiation of Neo-Tethyan ocean: ophiolites and metamorphic soles in southern Turkey. Acta Petrol Sin 34:3302–3314 ((in Chinese with English abstract))

    Google Scholar 

  11. Cheng C, Zheng H, Kapsiotis A, Liu W, Lenaz D, Velicogna M, Zhong L, Huang Q, Yuan Y, Xia B (2018) Geochemistry and geochronology of dolerite dykes from the Daba and Dongbo peridotite massifs, SW Tibet: insights into the style of mantle melting at the onset of Neo-Tethyan subduction. Lithos 322:281–295

    Article  Google Scholar 

  12. Clark M, Robertson AHF (2002) The role of the Early Tertiary Ulukısla Basin, southern Turkey, in suturing of the Mesozoic Tethys ocean. J Geo Soc 159:673–690

    Article  Google Scholar 

  13. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  14. Çörtük RM, Çelik ÖF, Özkan M, Sherlock SC, Marzoli A, Altıntaş İE, Topuz G (2016) Origin and geodynamic environments of the metamorphic sole rocks from the İzmir–Ankara–Erzincan suture zone (Tokat, northern Turkey). Int Geol Rev 58:1839–1855

    Article  Google Scholar 

  15. Dewey JF (1976) Ophiolite obduction. Tectonophysics 31:93–120

    Article  Google Scholar 

  16. Dewey JF, Casey JF (2011) The origin of obducted large-slab ophiolite complexes. In: Brown D, Ryan PD (eds) Arc-Continent collision. Frontiers in earth sciences. Springer, Berlin, Heidelberg, pp 431–444

  17. Dewey JF, Casey JF (2013) The sole of an ophiolite: the Ordovician Bay of Islands Complex, Newfoundland. J Geo Soc 170:715–722

    Article  Google Scholar 

  18. Dilek Y, Thy P (1992) Structure, petrology and geochronology of mafic dike intrusions in the Tauride belt (S. Turkey) and implications for the Neotethyan paleogeography EOS Transactions. Am Geophys Union 73:546

    Google Scholar 

  19. Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Article  Google Scholar 

  20. Dilek Y, Furnes H (2019) Tethyan ophiolites and Tethyan seaways. J Geo Soc 176:899–912

  21. Dilek Y, Thy P, Hacker B, Grundvig S (1999) Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): implications for the Neotethyan ocean. Geol Soc Am Bull 111:1192–1216

    Article  Google Scholar 

  22. Dumitru TA, Ernst WG, Hourigan JK, McLaughlin RJ (2015) Detrital zircon U–Pb reconnaissance of the Franciscan subduction complex in Northwestern California. Int Geol Rev 57:767–800

    Article  Google Scholar 

  23. Escartín J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455:790–794

    Article  Google Scholar 

  24. GDMRE (General Directrorate of Mineral Research and Exploration) (2002) 1:500.000 scaled Geological Maps of Turkey (Adana map section), Ankara-Turkey

  25. Girardeau J, Mercier JCC, Xibin W (1985) Petrology of the mafic rocks of the Xigaze ophiolite, Tibet—implications for the genesis of the oceanic lithosphere. Contrib Mineral Petrol 90:309–321

    Article  Google Scholar 

  26. Gnos E, Peters T (1993) K–Ar ages of the metamorphic sole of the Semail Ophiolite: implications for ophiolite cooling history. Contrib Mineral Petrol 113:325–332

    Article  Google Scholar 

  27. Guilmette C, Hébert R, Wang C, Villeneuve M (2009) Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos 112:149–162

    Article  Google Scholar 

  28. Guilmette C, Smit MA, van Hinsbergen DJJ, Gürer D, Corfu F, Charette B, Maffione M, Rabeau O, Savard D (2018) Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat Geosci 11:688–695

    Article  Google Scholar 

  29. Güngör T, Akal C, Özer S, Hasözbek A, Sarı B, Mertz-Kraus R (2018) Kinematics and U–Pb zircon ages of the sole metamorphics of the Marmaris Ophiolite, Lycian Nappes, Southwest Turkey. Int Geol Rev 61:1124–1142

    Article  Google Scholar 

  30. Hacker BR (1990) Simulation of the metamorphic and deformational history of the metamorphic sole of the Oman ophiolite. J Geophys Res 95:4895–4907

    Article  Google Scholar 

  31. Hart SR (1984) A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  32. Hart SR, Gerlach DC, White WM (1986) A possible new Sr–Nd–Pb mantle array and consequences for mantle mixing. Geochim Cosmochim Acta 50:1551–1557

    Article  Google Scholar 

  33. Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  Google Scholar 

  34. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53, pp 27–62

  35. Ishikawa T, Fujisawa S, Nagaishi K, Masuda T (2005) Trace element characteristics of the fluid liberated from amphibolite-facies slab: inference from the metamorphic sole beneath the Oman ophiolite and implication for boninite genesis. Earth Planet Sci Lett 240:355–377

    Article  Google Scholar 

  36. Keenan TE, Encarnación J, Buchwaldt R, Fernandez D, Mattinson J, Rasoazanamparany C, Luetkemeyer PB (2016) Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proc Natl Acad Sci 113:E7359–E7366

    Article  Google Scholar 

  37. La Flèche MR, Camire G, Jenner GA (1998) Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chem Geol 148:115–136

    Article  Google Scholar 

  38. Lázaro C, García-Casco A, Blanco-Quintero IF, Rojas-Agramonte Y, Corsini M, Proenza JA (2015) Did the Turonian-Coniacian plume pulse trigger subduction initiation in the Northern Caribbean? Constraints from 40Ar/39Ar dating of the Moa-Baracoa metamorphic sole (eastern Cuba). Int Geol Rev 57:919–942

    Article  Google Scholar 

  39. Le Maitre RW (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences subcommission on the systematics of igneous rocks. Blackwell

  40. Li HY, Taylor RN, Prytulak J, Kirchenbaur M, Shervais JW, Ryan JG, Godardg M, Reagan MK, Pearce JA (2019) Radiogenic isotopes document the start of subduction in the Western Pacific. Earth Planet Sci Lett 518:197–210

    Article  Google Scholar 

  41. Lian D, Yang J, Dilek Y, Liu F, Wu W, Xiong F (2017) Geochemical, geochronological, and Sr–Nd isotopic constraints on the origin of the mafic dikes from the Pozantı-Karsantı ophiolite: implications for tectonic evolution. J Geol 125:223–239

    Article  Google Scholar 

  42. Liu CZ, Zhang C, Yang LY, Zhang LL, Ji WQ, Wu FY (2014) Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos 205:127–141

    Article  Google Scholar 

  43. Liu X, Su BX, Xiao Y, Chen C, Uysal I, Jing JJ, Zhang PF, Chu Y, Lin W, Sakyi PA (2019) Initial subduction of Neo-Tethyan ocean: geochemical records in chromite and mineral inclusions in the Pozantı-Karsantı ophiolite, southern Turkey. Ore Geol Rev 110:102926

    Article  Google Scholar 

  44. Lytwyn JN, Casey JF (1995) The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozantı-Karsantı ophiolite, Turkey: evidence for ridge subduction. Geol Soc Am Bull 107:830–850

    Article  Google Scholar 

  45. Maffione M, Morris A, Anderson MW (2013) Recognizing detachment-mode seafloor spreading in the deep geological past. Sci Rep 3:1–6

    Article  Google Scholar 

  46. Maffione M, Thieulot C, van Hinsbergen DJJ, Morris A, Plumper O, Spakman W (2015a) Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites. Geochem Geophys Geosyst 16:1753–1770

    Article  Google Scholar 

  47. Maffione M, Van Hinsbergen DJJ, Koornneef LMT, Guilmette C, Hodges K, Borneman N, Huang W, Ding L, Kapp P (2015b) Forearc hyperextension dismembered the south Tibetan ophiolites. Geology 43:475–478

    Article  Google Scholar 

  48. Maffione M, van Hinsbergen DJJ, de Gelder GINO, van der Goes FC, Morris A (2017) Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria. J Geophys Res Solid Earth 122:1–24

    Article  Google Scholar 

  49. Mahoney JJ (1989) Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J Geophys Res 94:4033–4052

    Article  Google Scholar 

  50. Middelburg JJ, van der Weijden CH,  Woittiez JRW  (1988) Chemical processes affecting the mobility of major minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273

    Article  Google Scholar 

  51. Moix P, Beccaletto L, Kozur HW, Hochard C, Rosselet F, Stampfli GM (2008) A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics 45:7–39

    Article  Google Scholar 

  52. Moores EM (1981) Ancient suture zones within continents. Science 213:41–46

    Article  Google Scholar 

  53. Morris A, Anderson MW, Omer A, Maffione M, van Hinsbergen DJJ (2017) Rapid fore-arc extension and detachment-mode spreading following subduction initiation. Earth Planet Sci Lett 478:76–88

    Article  Google Scholar 

  54. Nicolas A, Girardeau J, Marcoux J, Dupre B, Wang XB, Cao YG, Zheng HX, Xiao XC (1981) The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere. Nature 294:414–417

    Article  Google Scholar 

  55. Okay AI (2008) Geology of Turkey: a synopsis. Anschitt 21:19–42

    Google Scholar 

  56. Parlak O (2016) The Tauride ophiolites of Anatolia (Turkey): a review. J Earth Sci 27:901–934

    Article  Google Scholar 

  57. Parlak O, Bozkurt E, Delaloye M (1996) The obduction direction of the Mersin ophiolite: structural evidence from subophiolitic metamorphics in the central Tauride belt, southern Turkey. Int Geol Rev 38:778–786

    Article  Google Scholar 

  58. Parlak O, Höck V, Delaloye M (2000) Suprasubduction zone origin of the Pozantı-Karsantı Ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Geo Soc Lond Spec Publ 173:219–234

    Article  Google Scholar 

  59. Parlak O, Höck V, Delaloye M (2002) The supra-subduction zone Pozantı-Karsantı ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65:205–224

    Article  Google Scholar 

  60. Parlak O, Karaoĝlan F, Rizaoĝlu T, Klötzli U, Koller F, Billor Z (2013) U–Pb and 40Ar–39Ar geochronology of the ophiolites and granitoids from the Tauride belt: implications for the evolution of the Inner Tauride suture. J Geodyn 65:22–37

    Article  Google Scholar 

  61. Parlak O, Dunkl I, Karaoğlan F, Kusky TM, Zhang C, Wang L, Koepke J, Billor Z, Hames WE, Şimşek E, Şimşek G, Şimşek T, Öztürk SE (2019) Rapid cooling history of a Neotethyan ophiolite: evidence for contemporaneous subduction initiation and metamorphic sole formation. Geol Soc Am Bull 131:11–12

    Article  Google Scholar 

  62. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (eds) Andesites: orogenic andesites and related rocks. Wiley, New York, NY, pp 525–548

  63. Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472

    Article  Google Scholar 

  64. Polat A, Casey JF (1995) A structural record of the emplacement of the Pozantı-Karsantı ophiolite onto the Menderes-Taurus block in the late Cretaceous, eastern Taurides, Turkey. J Struct Geol 17:1673–1688

    Article  Google Scholar 

  65. Polat A, Casey JF, Kerrich R (1996) Geochemical characteristics of accreted material beneath the Pozantı-Karsantı ophiolite, Turkey: intra-oceanic detachment, assembly and obduction. Tectonophysics 263:249–276

    Article  Google Scholar 

  66. Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura JI, Peate DW, Rowe MC, Woods M (2010) Fore-arc basalts and subduction initiation in the Izu–Bonin–Mariana system. Geochem Geophys Geosyst 11:1–17

    Article  Google Scholar 

  67. Reagan MK, Heaton DE, Schmitz MD, Pearce JA, Shervais JW, Koppers AAP (2019) Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet Sci Lett 506:520–529

    Article  Google Scholar 

  68. Rioux M, Garber J, Bauer A, Bowring S, Searle M, Kelemen P, Hacker B (2016) Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: new constraints on the tectonic evolution during ophiolite formation from high-precision U–Pb zircon geochronology. Earth Planet Sci Lett 451:185–195

    Article  Google Scholar 

  69. Robertson AHF (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65:1–67

    Article  Google Scholar 

  70. Robertson AHF (2004) Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth Sci Rev 66:331–387

    Article  Google Scholar 

  71. Robertson AHF, Parlak O, Ustaömer T (2012) Overview of the Palaeozoic–Neogene evolution of Neotethys in the Eastern Mediterranean region (Southern Turkey, Cyprus, Syria). Petrol Geosci 18:381–404

    Article  Google Scholar 

  72. Saha A, Sensarma S, Hazra A, Ganguly S, Peketi A, Doley B, Mudholkar AV (2020) Imprints of ancient recycled oceanic lithosphere in heterogeneous Indian Ocean mantle: Evidence from petrogenesis of Carlsberg ridge basalts from Northwest Indian Ocean. Gondwana Res 86:60–82

    Article  Google Scholar 

  73. Saka S, Uysal I, Akmaz RM, Kaliwoda M, Hochleitner R (2014) The effects of partial melting, melt-mantle interaction and fractionation on ophiolite generation: constraints from the late Cretaceous Pozantı-Karsantı ophiolite, southern Turkey. Lithos 202–203:300–316

    Article  Google Scholar 

  74. Searle M, Cox J (1999) Tectonic setting, origin, and obduction of the Oman ophiolite. Geol Soc Am Bull 111:104–122

    Article  Google Scholar 

  75. Sharman GR, Graham SA, Grove M, Kimbrough DL, Wright JE (2015) Detrital zircon provenance of the late Cretaceous–Eocene California forearc: influence of laramide low-angle subduction on sediment dispersal and paleogeography. Geol Soc Am Bull 127:38–60

    Article  Google Scholar 

  76. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  77. Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Article  Google Scholar 

  78. Spandler C, Pirard C (2013) Element recycling from subducting slabs to arc crust: a review. Lithos 170:208–223

    Article  Google Scholar 

  79. Spray GJ (1984) Possible causes and consequences of upper mantle decoupling and ophiolite displacement. Geo Soc Lond Spec Publ 13:255–268

    Article  Google Scholar 

  80. Staudigel H, Park KH, Pringle M, Rubenstone JL, Smith WHF, Zindler A (1991) The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet Sci Lett 102:24–44

    Article  Google Scholar 

  81. Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu–Bonin–Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636

    Article  Google Scholar 

  82. Stern RJ, Gerya T (2018) Subduction initiation in nature and models: a review. Tectonophysics 746:173–198

    Article  Google Scholar 

  83. Stern RJ, Reagan M, Ishizuka O, Ohara Y, Whattam S (2012) To understand subduction initiation, study forearc crust: to understand forearc crust, study ophiolites. Lithosphere 4:469–483

    Article  Google Scholar 

  84. Stille P, Unruh DM, Tatsumoto M (1986) Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. Geochim Cosmochim Acta 50:2303–2319

    Article  Google Scholar 

  85. Su BX, Chen C, Pang KN, Sakyi PA, Uysal I, Avci E, Liu X, Zhang PF (2018) Melt penetration in oceanic lithosphere: Li isotope records from the Pozantı-Karsantı ophiolite in Southern Turkey. J Petrol 59:191–205

    Article  Google Scholar 

  86. Su BX, Chen C, Xiao Y, Robinson P T, Liu X, Wang J, Uysal I, Bai Y, Sun Y (2021) The critical role of fluid-mediated diffusion in anomalous Fe–Mg–O isotope fractionations in ultramafic rocks of ophiolites. J Geophys Res Solid Earth 126:e2020JB020632

  87. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geo Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  88. Surpless KD, Beverly EJ (2013) Understanding a critical basinal link in Cretaceous Cordilleran paleogeography: detailed provenance of the Hornbrook Formation, Oregon and California. Geol Soc Am Bull 125:709–727

    Article  Google Scholar 

  89. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, p 312

    Google Scholar 

  90. Thuizat R, Whitechurch H, Montigny R, Juteau T (1981) K–Ar dating of some infra-ophiolitic metamorphic soles from the Eastern Mediterranean: new evidence for oceanic thrustings before obduction. Earth Planet Sci Lett 52:302–310

    Article  Google Scholar 

  91. Turner S, Caulfield J, Turner M, Keken PV, Maury R, Sandiford M, Prouteau G (2012) Recent contribution of sediments and fluids to the mantle’s volatile budget. Nat Geosci 5:50–54

    Article  Google Scholar 

  92. Uysal I, Ersoy EY, Karsl O, Dilek Y, Sadıklar MB, Ottley CJ, Tiepolo M, Meisel T (2012) Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major-trace-REE-PGE), and Re–Os isotope systematics. Lithos 132:50–69

    Article  Google Scholar 

  93. van Hinsbergen DJJ, Peters K, Maffione M, Spakman W, Guilmette C, Thieulot C, Plümper O, Gürer D, Brouwer FM, Aldanmaz E, Kaymakci N (2015) Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochem Geophys Geosyst 16:1771–1785

    Article  Google Scholar 

  94. Wakabayashi J, Dilek Y (2003) What constitutes “emplacement” of an ophiolite? Mechanisms and relationship to subduction initiation and formation of metamorphic soles. Geo Soc Lond Spec Publ 218:427–447

    Article  Google Scholar 

  95. Wakabayashi J, Ghatak A, Basu AR (2010) Suprasubduction-zone ophiolite generation, emplacement, and initiation of subduction: a perspective from geochemistry, metamorphism, geochronology, and regional geology. Geol Soc Am Bull 122:1548–1568

    Article  Google Scholar 

  96. Whattam SA, Stern RJ (2011) The “subduction initiation rule”: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib Mineral Petrol 162:1031–1045

    Article  Google Scholar 

  97. Xiong F, Meng Y, Yang J, Liu Z, Xu X, Eslami A, Zhang R (2020) Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geosci Front 11:277–292

    Article  Google Scholar 

  98. Zhang C, Liu CZ, Xu Y, Ji WB, Wang JM, Wu FY, Liu T, Zhang ZY, Zhang WQ (2019) Subduction re-initiation at dying ridge of Neo-Tethys: insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth Planet Sci Lett 523:1–14

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grants 91755205, 91855103, 41772055 and 41872208), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0801), the State Key Laboratory of Lithospheric Evolution (SKL-Q201801), and Youth Innovation Promotion Association, Chinese Academy of Sciences. Constructive reviews by Scott A. Whattam, an anonymous reviewer, and associate editor Daniela Rubatto, are acknowledged. We are very grateful to the staff of the different laboratories of the Institute of Geology and Geophysics for their help. Drs. J. X. Zhao, K. X. Hui, M. M. Cui and J. Wang are thanked for their help during the fieldwork. This work also benefited from the discussion with Dr. T. Liu.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Daniela Rubatto.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xin, GY., Chu, Y., Su, BX. et al. Rapid transition from MORB-type to SSZ-type oceanic crust generation following subduction initiation: insights from the mafic dikes and metamorphic soles in the Pozantı-Karsantı ophiolite, SE Turkey. Contrib Mineral Petrol 176, 64 (2021). https://doi.org/10.1007/s00410-021-01821-5

Download citation

Keywords

  • Ophiolite
  • Mafic dike
  • Metamorphic sole
  • Subduction initiation
  • Magma transition