Skip to main content

Experimental calibration of the reduced partition function ratios of tetrahedrally coordinated silicon from the Debye–Waller factors

Abstract

We present a new force constants approach that combines experimental and theoretical data to constrain the reduced partition function ratio (\(\beta\)-factor) of tetrahedrally coordinated silicon (\(^{IV}\)Si) in the crust and upper mantle minerals. Our approach extends the experiment-based general moment approach, which relies on nuclear resonant scattering and is only applicable to Mössbauer-active elements, to Mössbauer-inactive elements such as Si. We determine the resilience of \(^{IV}\)Si from the Debye–Waller factor, which is derived from the temperature dependence of single crystal X-ray diffraction data, and calculate the stiffness of \(^{IV}\)Si from the density-functional theory results. The relationship between the resilience the stiffness is calibrated, and we have used an experimentally measurable parameter, the effective coordination number of the \(\hbox {SiO}_4\) tetrahedron, to correct the stiffness. The correction is most pronounced for pyroxenes (\(\sim 2\%\)). The corrected stiffness is used to calculate the equilibrium isotope fractionation \(\beta\)-factor of each mineral, and the \(\alpha\)-factors is calculated by taking the ratio of \(\beta\)-factors of different minerals. We calculate the ln\(\alpha _{Si30/28}\) between minerals that contains \(\hbox {SiO}_4\) tetrahedra, and our results are consistent with DFT calculations and mass spectrometry results. Our results suggest that the Si isotopic equilibrium temperature between cristobalite and pyroxene in lunar basalt was underestimated by \(\sim\)250 \(^\circ\)C, and the pyroxene sample in IL-14 marble is in equilibrium with \(\beta\)-quartz.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15(5):261–267. https://doi.org/10.1063/1.1746492

    Article  Google Scholar 

  2. Blanchard M, Dauphas N, Hu M, Roskosz M, Alp E, Golden D, Sio C, Tissot F, Zhao J, Gao L, Morris R, Fornace M, Floris A, Lazzeri M, Balan E (2015) Reduced partition function ratios of iron and oxygen in goethite. Geochim Cosmochim Acta 151:19–33. https://doi.org/10.1016/j.gca.2014.12.006. http://www.sciencedirect.com/science/article/pii/S0016703714007157

  3. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953. https://link.aps.org/doi/10.1103/PhysRevB.50.17953

  4. Bourdon B, Roskosz M, Hin RC (2018) Isotope tracers of core formation. Earth-Sci Rev 181:61–81. https://doi.org/10.1016/j.earscirev.2018.04.006. http://www.sciencedirect.com/science/article/pii/S0012825217305792

  5. Brown P, Fox A, Maslen E, O’Keefe M, Willis B (2006) Intensity of diffracted intensities. Int Tables Crystallogr C:554–595

    Article  Google Scholar 

  6. Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature grystal ghemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Miner 58:594–618

    Google Scholar 

  7. Coppens P (2010) The structure factor. Int Tables Crystallogr B:10–23

    Article  Google Scholar 

  8. Corso AD (2014) Pseudopotentials periodic table: from h to pu. Comput Mater Sci 95:337–350. https://doi.org/10.1016/j.commatsci.2014.07.043. http://www.sciencedirect.com/science/article/pii/S0927025614005187

  9. Dauphas N, Roskosz M, Alp EE, Golden DC, Sio CK, Tissot FLH, Hu MY, Zhao J, Gao L, Morris RV (2012) A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite. Geochim Cosmochim Acta 94:254–275

    Article  Google Scholar 

  10. Dauphas N, Roskosz M, Alp E, Neuville D, Hu M, Sio C, Tissot F, Zhao J, Tissandier L, Médard E, Cordier C (2014) Magma redox and structural controls on iron isotope variations in earth’s mantle and crust. Earth Planet Sci Lett 398:127–140. https://doi.org/10.1016/j.epsl.2014.04.033. http://www.sciencedirect.com/science/article/pii/S0012821X14002738

  11. Dauphas N, Poitrasson F, Burkhardt C, Kobayashi H, Kurosawa K (2015) Planetary and meteoritic mg/si and \(\delta ^{30}\)si variations inherited from solar nebula chemistry. Earth Planet Sci Lett 427:236–248. https://doi.org/10.1016/j.epsl.2015.07.008. http://www.sciencedirect.com/science/article/pii/S0012821X15004355

  12. Dauphas N, Hu MY, Baker EM, Hu J, Tissot FLH, Alp EE, Roskosz M, Zhao J, Bi W, Liu J, Lin JF, Nie NX, Heard A (2018) SciPhon: a data analysis software for nuclear resonant inelastic X-ray scattering with applications to Fe, Kr, Sn, Eu and Dy. J Synchrotron Radiat 25(5):1581–1599. https://doi.org/10.1107/S1600577518009487

    Article  Google Scholar 

  13. Debye P (1913) Uber die intensitatsverteilung in den mit rontgenstrahlen erzeugten interferenzbildern. Verh Dtsch Phys Ges 15:738–752

    Google Scholar 

  14. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341. https://doi.org/10.1107/S0021889808042726

    Article  Google Scholar 

  15. Douthitt C (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46(8):1449–1458. https://doi.org/10.1016/0016-7037(82)90278-2. http://www.sciencedirect.com/science/article/pii/0016703782902782

  16. Dunitz JD, Maverick EF, Trueblood KN (1988) Atomic motions in molecular crystals from diffraction measurements. Angew Chem Int Ed Engl 27(7):880–895 https://doi.org/10.1002/anie.198808801. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.198808801

  17. Epstein S, Taylor HP (1970) \(^{18}\)O/\(^{16}\)O, \(^{30}\)Si/\(^{28}\)Si, D/H, and \(^{13}\)C/\(^{12}\)C studies of lunar rocks and minerals. Science 167(3918):533–535. https://doi.org/10.1126/science.167.3918.533. http://science.sciencemag.org/content/167/3918/533. http://science.sciencemag.org/content/167/3918/533.full.pdf

  18. Epstein S, Taylor HP (1971) \(^{18}\)O/\(^{16}\)O, \(^{30}\)Si/\(^{28}\)Si, D/H, and \(^{13}\)C/\(^{12}\)C ratios in lunar samples. Proc 2nd Lunar Sci Conf Houston 2:1421–1441

  19. Epstein S, Taylor HP (1972) \(^{18}\)O/\(^{16}\)O, \(^{30}\)Si/\(^{28}\)Si, \(^{13}\)C/\(^{12}\)C and D/H studies of Apollo 14 and 15 samples. Proc 3rd Lunar Sci Conf Houston 2:1429–1454

  20. Epstein S, Taylor HP (1973) \(^{18}\)O/\(^{16}\)O, \(^{30}\)Si/\(^{28}\)Si, \(^{13}\)C/\(^{12}\)C, D/H and hydrogen and carbon concentration data on apollo 11 soils. Eos 54:585–586

  21. Fitoussi C, Bourdon B (2012) Silicon isotope evidence against an enstatite chondrite earth. Science 335(6075):1477–1480. https://doi.org/10.1126/science.1219509. http://science.sciencemag.org/content/335/6075/1477. http://science.sciencemag.org/content/335/6075/1477.full.pdf

  22. Fitoussi C, Bourdon B, Kleine T, Oberli F, Reynolds BC (2009) Si isotope systematics of meteorites and terrestrial peridotites: implications for mg/si fractionation in the solar nebula and for si in the earth’s core. Earth Planet Sci Lett 287(1):77–85. https://doi.org/10.1016/j.epsl.2009.07.038. http://www.sciencedirect.com/science/article/pii/S0012821X09004543

  23. Georg R (2006) Geochemistry of stable silicon isotopes measured by high-resolution multi-collector inductively-coupled-plasma mass-spectrometry (hr-mc-icpms). PhD thesis, Ph.D. thesis, Swiss Federal institute of Technology Zuerich

  24. Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007) Silicon in the earth’s core. Nature 447(7148):1102

    Article  Google Scholar 

  25. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21(39):395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  26. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso AD, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, de-la Roza AO, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni SS (2017) Advanced capabilities for materials modelling with quantum ESPRESSO. J Phys: Condens Matter 29(46):465901. https://doi.org/10.1088/1361-648x/aa8f79

    Article  Google Scholar 

  27. Gillet P, McMillan P, Schott J, Badro J, Grzechnik A (1996) Thermodynamic properties and isotopic fractionation of calcite from vibrational spectroscopy of 18o-substituted calcite. Geochim Cosmochim Acta 60(18):3471–3485. https://doi.org/10.1016/0016-7037(96)00178-0. http://www.sciencedirect.com/science/article/pii/0016703796001780

  28. Hazen RM (1976) Effects of temperature and pressure on the cell dimension and x-ray temperature factors of periclase. Am Miner 61(3):266–71

    Google Scholar 

  29. Heaney PJ, Prewitt CT, Gibbs GV (1994) Silica: physical behavior, geochemistry, and materials applications. De Gruyter. https://doi.org/10.1515/9781501509698

  30. Heinemann R, Kroll H, Kirfel A, Barbier B (2006) Order and anti-order in olivine i: structural response to temperature. Eur J Mineral 18(6):673–689

    Article  Google Scholar 

  31. Heinemann R, Kroll H, Kirfel A, Barbier B (2007) Order and anti-order in olivine iii: variation of the cation distribution in the fe, mg olivine solid solution series with temperature and composition. Eur J Mineral 19(1):15–27

    Article  Google Scholar 

  32. Hin RC, Coath CD, Carter PJ, Nimmo F, Lai YJ, von Strandmann PAP, Willbold M, Leinhardt ZM, Walter MJ, Elliott T (2017) Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549(7673):511

    Article  Google Scholar 

  33. Hoppe R (1979) Effective coordination numbers (econ) and mean fictive ionic radii (mefir). Zeitschrift für Kristallographie-Crystalline Materials 150(1–4):23–52

    Google Scholar 

  34. Hoppe R, Voigt S, Glaum H, Kissel J, Müller HP, Bernet K (1989) A new route to charge distributions in ionic solids. J Less Common Metals 156(1):105–122. https://doi.org/10.1016/0022-5088(89)90411-6. http://www.sciencedirect.com/science/article/pii/0022508889904116

  35. Hu MY, Toellner TS, Dauphas N, Alp EE, Zhao J (2013) Moments in nuclear resonant inelastic X-ray scattering and their applications. Phys Rev B 87:064301. https://doi.org/10.1103/PhysRevB.87.064301. https://link.aps.org/doi/10.1103/PhysRevB.87.064301

  36. Huang F, Chen L, Wu Z, Wang W (2013) First-principles calculations of equilibrium mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: implications for mg isotope thermometry. Earth Planet Sci Lett 367:61–70. https://doi.org/10.1016/j.epsl.2013.02.025. http://www.sciencedirect.com/science/article/pii/S0012821X13000927

  37. Huang F, Wu Z, Huang S, Wu F (2014) First-principles calculations of equilibrium silicon isotope fractionation among mantle minerals. Geochim Cosmochim Acta 140:509–520

    Article  Google Scholar 

  38. Jackson JM, Palko JW, Andrault D, Sinogeikin SV, Lakshtanov DL, Wang J, Bass JD, ZHA CS, (2003) Thermal expansion of natural orthoenstatite to 1473 K. Eur J Mineral 15(3):469–473. https://doi.org/10.1127/0935-1221/2003/0015-0469. https://pubs.geoscienceworld.org/eurjmin/article-pdf/15/3/469/3121400/469.pdf

  39. Jackson JM, Hamecher EA, Sturhahn W (2009) Nuclear resonant x-ray spectroscopy of (mg,fe)\(\text{sio}_3\) orthoenstatites. Eur J Mineral 21(3):551–560. https://doi.org/10.1127/0935-1221/2009/0021-1932. https://www.ingentaconnect.com/content/schweiz/ejm/2009/00000021/00000003/art00003

  40. Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C (2010) The chemical composition of the earth: enstatite chondrite models. Earth Planet Sci Lett 293(3):259–268. https://doi.org/10.1016/j.epsl.2010.02.033. http://www.sciencedirect.com/science/article/pii/S0012821X10001445

  41. Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals: 5. applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties. Rev Geophys 20(4):827–849. https://doi.org/10.1029/RG020i004p00827. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RG020i004p00827. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/RG020i004p00827

  42. Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure. Eur J Mineral pp 63–78

  43. Kuhs W (2013) Atomic displacement parameters. Int Tables Crystallogr D:231–245

    Article  Google Scholar 

  44. Leu BM, Sage JT (2016) Stiffness, resilience, compressibility. Hyperfine Interact 237(1):87

    Article  Google Scholar 

  45. Meagher EP (1975) The crystal structures of pyrope and grossularite at elevated temperatures. Am Miner 60(3–4):218–228

    Google Scholar 

  46. Méheut M, Schauble EA (2014) Silicon isotope fractionation in silicate minerals: insights from first-principles models of phyllosilicates, albite and pyrope. Geochim Cosmochim Acta 134:137–154

    Article  Google Scholar 

  47. Méheut M, Lazzeri M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory. Geochim Cosmochim Acta 71(13):3170–3181. https://doi.org/10.1016/j.gca.2007.04.012. http://www.sciencedirect.com/science/article/pii/S0016703707001858

  48. Méheut M, Lazzeri M, Balan E, Mauri F (2009) Structural control over equilibrium silicon and oxygen isotopic fractionation: A first-principles density-functional theory study. Chem Geol 258(1):28–37. https://doi.org/10.1016/j.chemgeo.2008.06.051. http://www.sciencedirect.com/science/article/pii/S0009254108002738, applications of non-traditional stable isotopes in high-temperature geochemistry

  49. Momma K, Izumi F (2011) VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  50. Morse S, Lindsley D, Williams R (1980) Concerning intensive parameters in the Skaergaard intrusion. Am J Sci 280A:159–170

    Google Scholar 

  51. Nakatsuka A, Shimokawa M, Nakayama N, Ohtaka O, Arima H, Okube M, Yoshiasa A (2011) Static disorders of atoms and experimental determination of debye temperature in pyrope: Low-and high-temperature single-crystal x-ray diffraction study. Am Miner 96(10):1593–1605

    Article  Google Scholar 

  52. Nespolo M, Ferraris G, Ohashi H (1999) Charge distribution as a tool to investigate structural details: meaning and application to pyroxenes. Acta Crystallogr B 55(6):902–916. https://doi.org/10.1107/S0108768199008708

    Article  Google Scholar 

  53. Nkouandou OF, Temdjim R (2011) Petrology of spinel lherzolite xenoliths and host basaltic lava from ngao voglar volcano, adamawa massif (cameroon volcanic line, west africa): equilibrium conditions and mantle characteristics. J Geosci 56(4):375–387

    Google Scholar 

  54. Norris CA, Wood BJ (2017) Earth’s volatile contents established by melting and vaporization. Nature 549(7673):507

    Article  Google Scholar 

  55. O’Neill B (2014) Some useful moment results in sampling problems. Am Stat 68(4):282–296. https://doi.org/10.1080/00031305.2014.966589

    Article  Google Scholar 

  56. Parak F, Knapp EW (1984) A consistent picture of protein dynamics. Proc Natl Acad Sci 81(22):7088–7092. http://www.pnas.org/content/81/22/7088.abstract. http://www.pnas.org/content/81/22/7088.full.pdf

  57. Parak F, Hartmann H, Aumann KD, Reuscher H, Rennekamp G, Bartunik H, Steigemann W (1987) Low temperature x-ray investigation of structural distributions in myoglobin. Eur Biophys J 15(4):237–249. https://doi.org/10.1007/BF00577072

    Article  Google Scholar 

  58. Parak F, Heidemeier J, Nienhaus GU (1988) Protein structural dynamics as determined by mössbauer spectroscopy. Hyperfine Interact 40(1–4):147–157

    Article  Google Scholar 

  59. Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51(4):1010–1026. https://doi.org/10.1021/ja01379a006

    Article  Google Scholar 

  60. Pavese A, Artioli G, Prencipe M (1995) X-ray single-crystal diffraction study of pyrope in the temperature range 30–973 k. Am Miner 80(5–6):457–464

    Article  Google Scholar 

  61. Peacor Peacor DB (1973) High-temperature single-crystal study of the cristobalite inversion. Zeitschrift für Kristallographie-Crystall Mater 138(1–6):274–298

    Google Scholar 

  62. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865

  63. Polyakov V, Mineev S, Clayton R, Hu G, Gurevich V, Khramov D, Gavrichev K, Gorbunov V, Golushina L (2005) Oxygen isotope fractionation factors involving cassiterite (sno2): I. calculation of reduced partition function ratios from heat capacity and x-ray resonant studies. Geochim Cosmochim Acta 69(5):1287–1300. https://doi.org/10.1016/j.gca.2004.08.034. http://www.sciencedirect.com/science/article/pii/S001670370400688X

  64. Polyakov VB (1998) On anharmonic and pressure corrections to the equilibrium isotopic constants for minerals. Geochim Cosmochim Acta 62(18):3077–3085

    Article  Google Scholar 

  65. Polyakov VB (2009) Equilibrium iron isotope fractionation at core-mantle boundary conditions. Science 323(5916):912–914

    Article  Google Scholar 

  66. Polyakov VB, Mineev SD (2000) The use of mössbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64(5):849–865. https://doi.org/10.1016/S0016-7037(99)00329-4. http://www.sciencedirect.com/science/article/pii/S0016703799003294

  67. Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim Cosmochim Acta 71(15):3833–3846

    Article  Google Scholar 

  68. Prewitt C, Sueno S, Papike J (1976) The crystal structures of high albite and monalbite at high temperatures. Am Miner 61(11–12):1213–1225

    Google Scholar 

  69. Qin T, Wu F, Wu Z, Huang F (2016) First-principles calculations of equilibrium fractionation of o and si isotopes in quartz, albite, anorthite, and zircon. Contrib Miner Petrol 171(11):91

    Article  Google Scholar 

  70. Savage PS, Georg RB, Williams HM, Burton KW, Halliday AN (2011) Silicon isotope fractionation during magmatic differentiation. Geochim Cosmochim Acta 75(20):6124–6139. https://doi.org/10.1016/j.gca.2011.07.043, http://www.sciencedirect.com/science/article/pii/S0016703711004418

  71. Schauble E, Rossman G, Taylor H (2001) Theoretical estimates of equilibrium fe-isotope fractionations from vibrational spectroscopy. Geochim Cosmochim Acta 65(15):2487–2497. https://doi.org/10.1016/S0016-7037(01)00600-7. http://www.sciencedirect.com/science/article/pii/S0016703701006007

  72. Schauble E, Rossman GR, Taylor HP (2004) Theoretical estimates of equilibrium chromium-isotope fractionations. Chem Geol 205(1):99–114. https://doi.org/10.1016/j.chemgeo.2003.12.015. http://www.sciencedirect.com/science/article/pii/S0009254103004005

  73. Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55(1):65–111. https://doi.org/10.2138/gsrmg.55.1.65. https://dx.doi.org/10.2138/gsrmg.55.1.65. https://pubs.geoscienceworld.org/rimg/article-pdf/55/1/65/2944515/65.gsrmg.55.pdf

  74. Schauble EA (2011) First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim Cosmochim Acta 75(3):844–869. https://doi.org/10.1016/j.gca.2010.09.044. http://www.sciencedirect.com/science/article/pii/S0016703710006332

  75. Schauble EA, Rossman GR, Taylor H (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67(17):3267–3281. https://doi.org/10.1016/S0016-7037(02)01375-3. http://www.sciencedirect.com/science/article/pii/S0016703702013753, a Special Issue Dedicated to Robert Clayton

  76. Seiler P, Martinoni B, Dunitz JD (1984) Can x-ray diffraction distinguish between protium and deuterium atoms? Nature 309(5967):435

    Article  Google Scholar 

  77. Shahar A, Ziegler K, Young ED, Ricolleau A, Schauble EA, Fei Y (2009) Experimentally determined si isotope fractionation between silicate and fe metal and implications for earth’s core formation. Earth Planet Sci Lett 288(1):228–234. https://doi.org/10.1016/j.epsl.2009.09.025. http://www.sciencedirect.com/science/article/pii/S0012821X09005597

  78. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A Found Crystallogr 64(1):112–122

    Article  Google Scholar 

  79. Singwi KS, Sjölander A (1960) Resonance absorption of nuclear gamma rays and the dynamics of atomic motions. Phys Rev 120:1093–1102

    Article  Google Scholar 

  80. Smyth JR, Hazen RM (1973) The crystal structures of forsterite and hortonolite at several temperatures up to 900” c. Am Miner 58:588–593

    Google Scholar 

  81. Sturhahn W, Chumakov A (1999) Lamb-mössbauer factor and second-order doppler shift from inelastic nuclear resonant absorption. Hyperfine Interact 123(1–4):809–824

    Article  Google Scholar 

  82. Taylor HP, Epstein S (1973) Oxygen and silicon isotope ratios of the luna 20 soil. Geochim Cosmochim Acta 37(4):1107–1109. https://doi.org/10.1016/0016-7037(73)90204-4. http://www.sciencedirect.com/science/article/pii/0016703773902044

  83. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Script Mater 108:1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021. http://www.sciencedirect.com/science/article/pii/S1359646215003127

  84. Trueblood KNKN, Bürgi HB, Burzlaff H, Dunitz JD, Gramaccioli CM, Schulz HH, Shmueli U, Abrahams SC (1996) Dispacement parameter nomenclature. Report of a subcommittee on atomic displacement parameter nomenclature. Acta Crystallogr A 52(5):770–781. https://doi.org/10.1107/S0108767396005697

    Article  Google Scholar 

  85. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc pp 562–581. https://doi.org/10.1039/JR9470000562

  86. Valley JW, O’Neil JR (1984) Fluid heterogeneity during granulite facies metamorphism in the adirondacks: stable isotope evidence. Contrib Miner Petrol 85(2):158–173. https://doi.org/10.1007/BF00371706

    Article  Google Scholar 

  87. Wang L, Moon N, Zhang Y, Dunham WR, Essene EJ (2005) Fe–mg order-disorder in orthopyroxenes. Geochim Cosmochim Acta 69(24):5777–5788. https://doi.org/10.1016/j.gca.2005.08.011. http://www.sciencedirect.com/science/article/pii/S0016703705007003

  88. Watkin D (2008) Structure refinement: some background theory and practical strategies. J Appl Crystallogr 41(3):491–522. https://doi.org/10.1107/S0021889808007279

    Article  Google Scholar 

  89. Wehinger B, Bosak A, Refson K, Mirone A, Chumakov A, Krisch M (2015) Lattice dynamics of \(\alpha\)-cristobalite and the boson peak in silica glass. J Phys: Condens Matter 27(30):305401. https://doi.org/10.1088/0953-8984/27/30/305401

    Article  Google Scholar 

  90. Wilson AJC (1949) The probability distribution of X-ray intensities. Acta Crystallogr A 2(5):318–321. https://doi.org/10.1107/S0365110X49000813

    Article  Google Scholar 

  91. Winter J, Ghose S, Okamura F (1977) A high-temperature study of the thermal expansion and the anisotropy of the sodium atom in low albite. Am Miner 62(9–10):921–931

    Google Scholar 

  92. Wu Z, Huang F, Huang S (2015) Isotope fractionation induced by phase transformation: first-principles investigation for mg 2 sio 4. Earth Planet Sci Lett 409:339–347

    Article  Google Scholar 

  93. Yang H, Ghose S (1995) A transitional structural state and anomalous fe–mg order-disorder in mg-rich orthopyroxene,(mg0. 75fe0. 25) 2si2o6. Am Miner 80(1–2):9–20

    Article  Google Scholar 

  94. Zaccai G (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288(5471):1604–1607

    Article  Google Scholar 

  95. Zambardi T, Poitrasson F, Corgne A, Méheut M, Quitté G, Anand M (2013) Silicon isotope variations in the inner solar system: Implications for planetary formation, differentiation and composition. Geochim Cosmochim Acta 121:67–83. https://doi.org/10.1016/j.gca.2013.06.040. http://www.sciencedirect.com/science/article/pii/S001670371300375X

  96. Zhang D, Dera PK, Eng PJ, Stubbs JE, Zhang JS, Prakapenka VB, Rivers ML (2017) High pressure single crystal diffraction at PX\(\hat{} 2\). J Vis Exp 119:e54660

    Google Scholar 

  97. Zhang D, Jackson JM, Sturhahn W, Zhao J, Alp EE, Hu MY (2021) Measurements of the Lamb–Mössbauer factor at simultaneous high pressure-temperature conditions and estimates of the equilibrium isotopic fractionation of iron. Am Mineral Press. https://doi.org/10.2138/am-2021-7884

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed at GeoSoilEnviroCARS (Sector 13), Partnership for Extreme Crystallography program (PX2), Advanced Photon Source (APS), and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1634415) and Department of Energy-Geosciences (DE-FG02-94ER14466). PX2 program is supported by COMPRES under NSF Cooperative Agreement EAR-1661511. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-C02-6CH11357. DZ acknowledges Dr. Merlin Méheut for kindly sending data from his paper. We thank the reviewers for their constructive comments, which help to improve this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongzhou Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Gordon Moore.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Chen, M., Dera, P.K. et al. Experimental calibration of the reduced partition function ratios of tetrahedrally coordinated silicon from the Debye–Waller factors. Contrib Mineral Petrol 176, 66 (2021). https://doi.org/10.1007/s00410-021-01820-6

Download citation

Keywords

  • Silicon
  • Isotope fractionation
  • Crystallography
  • X-ray diffraction