Skip to main content
Log in

Podiform magnetite ore(s) in the Sabzevar ophiolite (NE Iran): oceanic hydrothermal alteration of a chromite deposit

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Serpentinite-hosted massive magnetite ore bodies are reported for the first time in the Late Cretaceous Sabzevar ophiolitic belt, northeastern Iran. They show irregular and discontinuous shapes with variable sizes ranging from 30 to 60 cm. Chromian spinel grains are observed within both magnetite ores and host serpentinite. Magmatic chromian spinels, (Cr,Al)-spinel I, with compositions close to (Mg0.6,Fe0.4)(Cr1.2,Al0.75,Fe3+0.05)O4 are preserved in the host serpentinite where they display a porous alteration rim composed of Cr-bearing chlorite and three different spinel-structure minerals: Cr-spinel (Fe0.6,Mg0.4)(Cr1.4,Al0.4,Fe3+0.2)O4, named Cr-spinel II (second generation), magnetite and ferritchromite, nominally FeCr2O4. In the magnetite ore body, no (Cr,Al)-spinel I is found and Cr-spinel II occurs as relict cores surrounded by ferritchromite and magnetite. Detailed X-ray elemental mapping revealed that the 200 μm-thick magnetite rim is composed of two magnetite types with different minor element compositions: the first rim found at the contact with ferritchromite is thin (20 μm; magnetite-I); the thicker outer rim contains numerous Fe-poor and Mg- and Si-rich silicate inclusions (magnetite-II). Observations at the TEM scale allows to identify ferritchromite which occurs as a micrometer-sized rim between Cr-spinel II and magnetite I. Thermodynamic modelling of the phase relationships in the studied Sabzevar serpentinite suggests that Cr-spinel II is produced along with chlorite during a first alteration stage at temperatures between 725 and 575 °C in the course of peridotite-water interactions. A second hydrothermal alteration stage producing ferritchromite and magnetite is inferred from the thermochemical modelling at temperatures < 400 °C under high H2 fugacity. This latter stage corresponds to the serpentinization of the Sabzevar oceanic peridotite and associated podiform chromitite deposit. The two alteration stages are interpreted as the result of the interaction between seawater and oceanic mantle at two different depth ranges in the course of its exhumation. Our thermodynamic calculations and textural relationships revealed that Cr is immobile and Fe is the main element to be transferred to the magnetite ore during alteration processes. Fe possibly originated from direct transport of the Fe2+ produced during olivine dissolution or from the dissolution of nano-sized magnetite grains initially formed in the host serpentinite during early serpentinization. Mass balance calculation reveals significant iron transport at a scale > 10 m during serpentinization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography mineral chemistry and petrophysics of serpentinites from MAR 15°N (ODP Leg 209 Site 1274). Geophys Res Lett 33(13)

  • Barnes SJ (2000) Chromite in komatiites II. Modification during greenschist to mid-amphibolite facies metamorphism. J Petrol 41(3):387–409

  • Barra F, Gervilla F, Hernández E, Reich M, Padrón-Navarta JA, González-Jiménez JM (2014) Alteration patterns of chromian spinels from La Cabaña peridotite, south-central Chile. Mineral Petrol 108(6):819–836

    Article  Google Scholar 

  • Batanova VG, Sobolev AV, Magnin V (2018) Trace element analysis by EPMA in geosciences: detection limit precision and accuracy. IOP Conf Series: Mater Sci Eng 304:012001

    Article  Google Scholar 

  • Beard JS, Frost BR, Fryer P, McCaig A, Searle R, Ildefonse B, Zinin P, Sharma SK (2009) Onset and progression of serpentinization and magnetite formation in olivine-rich troctolite from IODP Hole U1309D. J Petrol 50(3):387–403

    Article  Google Scholar 

  • Brunet F (2019) Hydrothermal production of H2 and magnetite from steel slags: a geo-inspired approach based on olivine serpentinization. Front Earth Sci 7:17

    Article  Google Scholar 

  • Carbonin S, Martin S, Tumiati S, Rossetti P (2015) Magnetite from the Cogne serpentinites (Piemonte ophiolite nappe Italy). Insights into seafloor fluid–rock interaction. Eur J Mineral 27(1):31–50

  • Ciobanu CL, Verdugo-Ihl MR, Slattery A, Cook NJ, Ehrig K, Courtney-Davies L, Wade BP (2019) Silician magnetite: Si–Fe-nanoprecipitates and other mineral inclusions in magnetite from the Olympic dam deposit, South Australia. Minerals 9(5):311

    Article  Google Scholar 

  • Colás V, González-Jiménez JM, Camprubí A, Proenza JA, Griffin WL, Fanlo I, O’Reilly SY, Gervilla F, González-Partida E (2019) A reappraisal of the metamorphic history of the Tehuitzingo chromitite, Puebla state, Mexico. Int Geol Rev 61(14):1706–1727

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  • Deditius AP, Reich M, Simon AC, Suvorova A, Knipping J, Roberts MP, Rubanov S, Dodd A, Saunders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Mineral Petrol 173:46. https://doi.org/10.1007/s00410-018-1474-1

    Article  Google Scholar 

  • Della Giusta A, Carbonin S, Russo U (2011) Chromite to magnetite transformation: Compositional variations and cation distributions (southern Aosta Valley, Western Alps, Italy). Periodico di Mineralogia 80(1):1–17

    Google Scholar 

  • Dick HJ, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Miner Petrol 86(1):54–76

    Article  Google Scholar 

  • Engi M (1983) Equilibria involving Al-Cr spine: Mg-Fe exchange with olivine. Experiments, thermodynamic analysis, and consequences for geothermometry. Am J Sci 284-A:29–71

    Google Scholar 

  • Eslami A, Arai S, Miura M, Mackizadeh MA (2018a) Metallogeny of the mantle-hosted magnetite ores of the Nain ophiolite, Central Iran: implications for high mobility and re-concentration of Fe promoted by multi-episodic serpentinization. Ore Geol Re 95:80–694

    Google Scholar 

  • Eslami A, Grieco G, Davoudi M (2018b) Preliminary geochemical studies of podiform chromitites in the Cheshmeh-Khan Mining District, central sector of Sabzevar ophiolite belt, NE Iran. In: 8th Geochemistry Symposium, Antalya, Turkey

  • Evans BW, Frost BR (1976) Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochim Cosmochim Acta 39:959–972

    Article  Google Scholar 

  • Evans KA, Powell R, Frost BR (2013) Using equilibrium thermodynamics in the study of metasomatic alteration illustrated by an application to serpentinites. Lithos 168–169:67–84

    Article  Google Scholar 

  • Frost BR (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26(1):31–63

    Article  Google Scholar 

  • Gahlan HA, Arai S (2007) Genesis of peculiarly zoned Co, Zn and Mn-rich chromian spinel in serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco. J Mineral Petrol Sci 102:69–85

    Article  Google Scholar 

  • Gahlan HA, Arai S, Ahmed AH, Ishida Y, Abdel-Aziz YM, Rahimi A (2006) Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: an implication for mobility of iron during serpentinization. J Afr Earth Sci 46:318–330

    Article  Google Scholar 

  • Galvez ME, Manning CE, Connolly JAD, Rumble D (2015) The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet Sci Lett 1:1–13. https://doi.org/10.1016/j.epsl.2015.06.019

    Article  Google Scholar 

  • Galvez ME, Connolly JA, Manning CE (2016) Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 539(7629):420–424

    Article  Google Scholar 

  • Gervilla F, Padrón-Navarta JA, Kerestedjian T, Sergeeva I, González-Jiménez JM, Fanlo I (2012) Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contrib Miner Petrol 164(4):643–657

    Article  Google Scholar 

  • Hamilton W (1958) Neutron diffraction investigation of the 119 K transition in magnetite. Phys Rev 110:1050–1057

    Article  Google Scholar 

  • Hasenclever J, Theissen-Krah S, Rüpke LH, Morgan JP, Iyer K, Petersen S, Devey CW (2014) Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges. Nature 508(7497):508–512. https://doi.org/10.1038/nature13174 (PMID: 24759413)

    Article  Google Scholar 

  • Holland T, Powell R (1996) Thermodynamics of order-disorder in minerals; II, symmetric formalism applied to solid solutions. Am Mineral 81:1425–1437

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

    Article  Google Scholar 

  • Huang J, Hao J, Huang F, Sverjensky DA (2019) Mobility of chromium in high temperature crustal and upper mantle fluids. Geochem Perspect Lett 12:1–6. https://doi.org/10.7185/geochemlet.1926

    Article  Google Scholar 

  • Huberty JM, Konishi H, Heck PR, Fournelle JH, Valley JW, Xu H (2012) Silician magnetite from the Dales Gorge member of the Brockman iron formation, Hamersley Group, Western Australia. Am Mineral 97(1):26–37

    Article  Google Scholar 

  • Jennings ES, Holland TJB (2015) A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J Petrol 56(5):869–892

    Article  Google Scholar 

  • Kendelewicz T, Liu P, Doyle CS, Brown GE Jr, Nelson EJ, Chambers SA (2000) Reaction of water with the (100) and (111) surfaces of Fe3O4. Surf Sci 453:32–46

    Article  Google Scholar 

  • Khedr MZ, Arai S (2018) Composite origin of magnetite deposits hosted in Oman peridotites: evidence for iron mobility during serpentinization. Ore Geol Rev 101:180–198. https://doi.org/10.1016/j.oregeorev.2018.07.003

    Article  Google Scholar 

  • Kimball KL (1990) Effects of hydrothermal alteration on the compositions of chromian spinels. Contrib Miner Petrol 105(3):337–346

    Article  Google Scholar 

  • Klein F, Bach W (2009) Fe–Ni–Co–O–S phase relations in peridotite–seawater interactions. J Petrol 50(1):37–59

    Article  Google Scholar 

  • Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquó T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15 N on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 73(22):6868–6893

    Article  Google Scholar 

  • Klein F, Bach W, Humphris SE, Kahl WA, Jöns N, Moskowitz B, Berquó TS (2014) Magnetite in seafloor serpentinite—some like it hot. Geology 42(2):135–138

    Article  Google Scholar 

  • Klemme S, Ivanic TJ, Connolly JAD, Harte B (2009) Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos 112:986–991. https://doi.org/10.1016/j.lithos.2009.05.007

    Article  Google Scholar 

  • Khalatbari Jafari M, Babaie HA, Gani M (2013) Geochemical evidence for Late Cretaceous marginal arc-to-backarc transition in the Sabzevar ophiolitic extrusive sequence northeast Iran. J Asian Earth Sci 70–71:209–230

    Article  Google Scholar 

  • Liu ZB, Li JC, Zhao T, Song Y, Yuan GL, Lin Y, Shao HS (2020) Serpentinisation and magnetite formation in the Angwu ultramafic rocks from the central Bangong-Nujiang suture zone. Tibetan Plateau Geol J 55(2):1283–1299

    Google Scholar 

  • Maffione M, Morris A, Plümper O, van Hinsbergen DJJ (2014) Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes. Geochem Geophys Geosyst 15(4):923–944

    Article  Google Scholar 

  • Malvoisin B, Brunet F (2014) Water diffusion-transport in a synthetic dunite: Consequences for oceanic peridotite serpentinization. Earth Planet Sci Lett 403:263–272

    Article  Google Scholar 

  • Malvoisin B, Carlut J, Brunet F (2012) Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB008612

    Article  Google Scholar 

  • Malvoisin B, Zhang C, Müntener O, Baumgartner LP, Kelemen PB, Oman Drilling Project Science Party (2020) Measurement of volume change and mass transfer during serpentinization: insights from the oman drilling project. J Geophys Res Solid Earth 125(5):e2019JB018877

    Article  Google Scholar 

  • Mayhew LE, Ellison ET, McCollom TM, Trainor TP, Templeton AS (2013) Hydrogen generation from low-temperature water-rock reactions. Nat Geosci 6(6):478–484

    Article  Google Scholar 

  • McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73(3):856–875

    Article  Google Scholar 

  • Merlini A, Grieco G, Diella V (2009) Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (Southern Urals, Russia). Am Mineral 94(10):1459–1467

    Article  Google Scholar 

  • Michailidis KM (1990) Zoned chromites with high Mn-contents in the Fe-Ni-Cr-laterite ore deposits from the Edessa area in Northern Greece. Miner Deposita 25(3):190–197

    Article  Google Scholar 

  • Moody JB (1976) An experimental study on the serpentinization of iron-bearing olivines. Can Mineral 14(4):462–478

    Google Scholar 

  • Noghreyan M (1982) Evolution geochimique, mineralogique et structurale d’un edificeophiolitique singulier: le massif de Sabzevar (partie centrale), NE de l’Iran. TheseDoc. d’Etat, Universite de Nancy, France, p 239

  • Oelkers EH, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: aqueous tracer diffusion coefficients of ions to 1000 C and 5 kb. Geochim Cosmochim Acta 52(1):63–85

    Article  Google Scholar 

  • Omrani H (2018) Island-arc and active continental margin adakites from the Sabzevar Zone, Iran. Petrology 26:96–113. https://doi.org/10.1134/S0869591118010058

    Article  Google Scholar 

  • O’Neil HSC, Wall VJ (1987) The Olivine—Orthopyroxene—Spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s Upper Mantle. J Petrol 28(6):1169–1191

    Article  Google Scholar 

  • Oufi O, Cannat M, Horen H (2002) Magnetic properties of variably serpentinized abyssal peridotites. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB000549

    Article  Google Scholar 

  • Padrón-Navarta JA, Sánchez-Vizcaíno VL, Hermann J, Connolly JAD, Garrido CJ, Gómez-Pugnaire MT, Marchesi C (2013) Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos 178:186–196. https://doi.org/10.1016/j.lithos.2013.02.001

    Article  Google Scholar 

  • Paraskevopoulos GM, Economou MI (1980) Genesis of magnetite ore occurrences by metasomatism of chromite ores in Greece. Neues Jb Miner Abh 140:29–53

    Google Scholar 

  • Parkinson GS, Novotny Z, Jacobson P, Schmid M, Diebold U (2011) Room temperature water splitting at the surface of magnetite RID A-3681-2010. J Am Chem Soc 133:12650–12655

    Article  Google Scholar 

  • Prabhakar N, Bhattacharya A (2013) Origin of zoned spinel by coupled dissolution–precipitation and inter-crystalline diffusion: evidence from serpentinized wehrlite, Bangriposi, Eastern India. Contrib Miner Petrol 166(4):1047–1066

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66(5): 689–708

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10(1–2):254–269

    Google Scholar 

  • Rahmani F, Mackizadeh MA, Noghreyan M, Marchesi C, Garrido CJ (2020) Petrology and geochemistry of mafic and ultramafic cumulate rocks from the eastern part of the Sabzevar ophiolite (NE Iran): Implications for their petrogenesis and tectonic setting. Geosci Front 11(6):347–2364

    Article  Google Scholar 

  • Rauch EF, Véron MJMC (2014) Automated crystal orientation and phase mapping in TEM. Mater Charact 98:1–9

    Article  Google Scholar 

  • Rossetti P, Gatta GD, Diella V, Carbonin S, Della Giusta A, Ferrario A (2009) The magnetite ore districts of the southern Aosta Valley (Western Alps, Italy): a mineralogical study of metasomatized chromite ore. Mineral Mag 73:737–751

    Article  Google Scholar 

  • Rossetti F, Nasrabady M, Vignaroli G, Theye T, Gerdes A, Razavi MH, Vaziri HM (2010) Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran. Terra Nova 22(1):26–34

    Article  Google Scholar 

  • Rouméjon S, Früh-Green GL, Orcutt BN, IODP Expedition 357 Science Party (2018) Alteration heterogeneities in peridotites exhumed on the southern wall of the atlantis massif (IODP expedition 357). J Petrol 59(7):1329–1358

    Article  Google Scholar 

  • Sack RO, Ghiorso MS (1991) Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. Am Mineral 76(5–6):827–847

    Google Scholar 

  • Santos JS, Doriguetto AC, Fernandes NG (2005) Magnesium aluminium chromite. Acta Crystallogr C 61(3):i27–i28

    Article  Google Scholar 

  • Shafaii Moghadam H, Corfu F, Chiaradia M, Stern RJ, Ghorbani G (2014) Sabzevar Ophiolite, NE Iran: progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos 210–211:224–241

    Article  Google Scholar 

  • Shafaii Moghadam H, Zaki Khedr M, Arai S, Stern RJ, Ghorbani G, Tamura A, Ottley CJ (2015) Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite Iran: A model for formation of podiform chromitites. Gondwana Res 27(2):575–593

    Article  Google Scholar 

  • Shojaat B, Hassanipak AA, Mobasher K, Ghazi AM (2003) Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. J Asian Earth Sci 21:1053–1067

    Article  Google Scholar 

  • Skomurski FN, Kerisit S, Rosso KM (2010) Structure, charge distribution, and electron hopping dynamics in magnetite (Fe3O4) (100) surfaces from first principles. Geochim Cosmochim Acta 74:4234–4248

    Article  Google Scholar 

  • Sverjensky DA, Harrison B, Azzolini D (2014) Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C. Geochim Cosmochim Acta 129:125–145. https://doi.org/10.1016/J.GCA.2013.12.019

    Article  Google Scholar 

  • Tao C, Seyfried WE Jr, Lowell RP, Liu Y, Liang J, Guo Z, Ding K, Zhang H, Liu J, Qiu L, Egorov I, Liao S, Zhao M, Zhou J, Deng X, Li H, Wang H, Cai W, Zhang G, Zhou H, Lin J, Li W (2020) Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat Commun 11:1300. https://doi.org/10.1038/s41467-020-15062-w

    Article  Google Scholar 

  • Toffolo L, Nimis P, Martin S, Tumiati S, Bach W (2017) The Cogne magnetite deposit (Western Alps, Italy): a Late Jurassic seafloor ultramafic-hosted hydrothermal system? Ore Geol Rev 83:103–126

    Article  Google Scholar 

  • Ulmer GC (1974) Alteration of chromite during serpentinization in the Pennsylvania-Maryland District1. Am Mineral 59:1236–1241

    Google Scholar 

  • Wylie AG, Candela PA, Burke TM (1987) Compositional zoning in unusual Zn-rich chromite from the Sykesville District of Maryland and its bearing on the origin of" ferritchromit". Am Mineral 72(3–4):413–422

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere appreciation to the editor Prof. Dante Canil and referee Prof. B.R. Frost whose careful comments and useful criticisms greatly improved the manuscript. This work has been supported by a grant from LabEx OSUG@2020 (Investissements d’avenir – ANR10 LABX56). This research was also supported by Iran National Science Foundation (INSF). A.E. acknowledges a financial support (Cotutelle Scholarship) from the Embassy of France in Tehran. Nathaniel Findling, Valérie Magnin and Valentina Batanova (ISTerre, Grenoble) are acknowledged for their help with Scanning Electron Microscopy and Electron Microprobe Analysis. G. Renou (CMTC, Grenoble) is thanked for help with transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Eslami or Ali Kananian.

Additional information

Communicated by Dante Canil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, A., Malvoisin, B., Brunet, F. et al. Podiform magnetite ore(s) in the Sabzevar ophiolite (NE Iran): oceanic hydrothermal alteration of a chromite deposit. Contrib Mineral Petrol 176, 43 (2021). https://doi.org/10.1007/s00410-021-01799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01799-0

Keywords

Navigation