Skip to main content

Advertisement

Log in

Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA-ICPMS and in-situ O and Sr isotope analyses

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Phalaborwa world-class phosphate deposit (South Africa) is hosted by a Paleoproterozoic alkaline complex mainly composed of phoscorite, carbonatite, pyroxenitic rocks, and subordinate fenite. In addition, syenite and trachyte occur in numerous satellite bodies. New petrological and in-situ geochemical data along with O and Sr isotope data obtained on apatite demonstrate that apatite is in the principal host rocks (pyroxenitic rocks, phoscorite and carbonatite) formed primarily by igneous processes from mantle-derived carbonatitic magmas. Early-formed magmatic apatite is particularly enriched in light rare earth elements (LREE), with a decrease in the REE content ascribed to magma differentiation and early apatite fractionation in isolated interstitial melt pockets. Rayleigh fractionation favored a slight increase in δ18O (below 1%) at a constant Sr isotopic composition. Intrusion of fresh carbonatitic magma into earlier-formed carbonatite bodies locally induced re-equilibration of early apatite with REE enrichment but at constant O and Sr isotopic compositions. In fenite, syenite and trachyte, apatite displays alteration textures and LREE depletion, reflecting interaction with fluids. A marked decrease in δ18O in apatite from syenite and trachyte indicates a contribution from δ18O-depleted meteoric fluids. This is consistent with the epizonal emplacement of the satellite bodies. The general increase of the Sr isotope ratios in apatite in these rocks reflects progressive interaction with the country rocks over time. This study made it possible to decipher, with unmatched precision, the succession of geological processes that led to one of the most important phosphate deposits worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alves PR (2008) The carbonatite-hosted apatite deposit of Jacupiranga, SE Brazil: Styles of mineralization, ore characterization, and association with mineral processing. Unpublished PhD thesis, Missouri University of Science and Technology

  • Baele JM, Decrée S, Rusk B (2019) Cathodoluminescence applied to ore geology and exploration. In: Decrée S, Robb L (eds) Ore deposits: Origin, exploration, and exploitation. Wiley, New York, pp 131–161

    Google Scholar 

  • Belousova EA, Griffin WL, O'Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Google Scholar 

  • Bernard-Griffiths J, Peucat JJ, Fourcade S, Kienast JR, Ouzegane K (1988) Origin and evolution of 2 Ga old carbonatite complex (Ihouhaouene, Ahaggar, Algeria): Nd and Sr isotopic evidence. Contrib Miner Petrol 100:339–348

    Google Scholar 

  • Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G, Rémond G (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and zircon. In: Pagel M, et al. (eds) Cathodoluminescence in Geosciences. Springer Verlag, New York, pp 127–160

    Google Scholar 

  • Broom-Fendley S, Heaton T, Wall F, Gunn G (2016a) Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: the example of Songwe Hill, Malawi. Chem Geol 440:275–287

    Google Scholar 

  • Broom-Fendley S, Styles MT, Appleton JD, Gunn G, Wall F (2016b) Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. Am Miner 101:596–611

    Google Scholar 

  • Broom-Fendley S, Brady AE, Wall F, Gunn G, Dawes W (2017) REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol Rev 81:23–41

    Google Scholar 

  • Buchholz P, Foya S (2015) Investor’s and Procurement Guide South Africa, DERA. Rohstoffinformationen 22 Deutsche. Rohstoffagentur, Berlin

    Google Scholar 

  • Bühn B, Dörr W, Brauns CM (2001) Petrology and age of the Otjisazu carbonatite complex, Namibia: implications for the pre-and synorogenic Damaran evolution. J Afr Earth Sci 32:1–17

    Google Scholar 

  • Cao M, Li G, Qin K, Seitmuratova EY, Liu Y (2012) Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization. Res Geol 62:63–83

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Zaitsev AN et al (2017) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274:188–213

    Google Scholar 

  • Chen J, Shen SZ, Li XH et al (2016) High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr Palaeoclim Palaeoecol 448:26–38

    Google Scholar 

  • Chu MF, Wang KL, Griffin WL et al (2009) Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids. J Petrol 50:1829–1855

    Google Scholar 

  • Cole DR, Chakraborty S (2001) Rates and mechanisms of isotopic exchange. Rev Miner Geochem 43:83–223

    Google Scholar 

  • Conway CM, Taylor HP Jr (1969) O18/O16 and C13/C12 ratios of coexisting minerals in the Oka and Magnet Cove carbonatite bodies. J Geol 77:618–626

    Google Scholar 

  • Dawson JB, Hinton RW (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Miner Mag 67:921–930

    Google Scholar 

  • Deans T (1966) Economic mineralogy of African carbonatites. In: Tuttle OF, Gittins J (eds) Carbonatites, Interscience. Wiley, New York, pp 385–413

    Google Scholar 

  • Decrée S, Boulvais P, Cobert C et al (2015) Structurally-controlled hydrothermal alteration in the Upper Ruvubu Alkaline Plutonic Complex (Burundi): implications for REE and HFSE mobilities. Precambr Res 269:281–295

    Google Scholar 

  • Decrée S, Boulvais P, Tack L, André L, Baele JM (2016) Fluorapatite in carbonatite-related phosphate deposits: the case of the Matongo carbonatite (Burundi). Miner Dep 51:453–466

    Google Scholar 

  • Deines P (1989) Stable isotope variations in carbonatite. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London

    Google Scholar 

  • De Jager DH (1989) Phosphate resources in the Palabora igneous complex, Transvaal, South Africa. In: Notholt AJG, Sheldon RP, Davidson DF (eds) Phosphate deposits of the world. Cambridge University Press, Cambridge, pp 267–272

    Google Scholar 

  • Demény A, Sitnikova MA, Karchevsky PI (2004) Stable C and O isotope compositions of carbonatite complexes of the Kola Alkaline Province: phoscorite-carbonatite relationships and source compositions. In: Wall F, Zaitsev A (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineralogical Society Series, Berlin, pp 407–431

    Google Scholar 

  • De Toledo MCM, Lenharo SL, Ferrari VC, Fontan F, De Parseval P, Leroy G (2004) The compositional evolution of apatite in the weathering profile of the Catalão I alkaline-carbonatitic complex, Goiás, Brazil. Can Miner 42:1139–1158

    Google Scholar 

  • Eby GN (1975) Abundance and distribution of the rare-earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec. Geochim Cosmochim Acta 39:597–620

    Google Scholar 

  • Emsbo P, McLaughlin PI, Breit GN, du Bray EA, Koenig AE (2015) Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Res 27:776–785

    Google Scholar 

  • Emo RB, Smit MA, Schmitt M et al (2018) Evidence for evolved Hadean crust from Sr isotopes in apatite within Eoarchean zircon from the Acasta Gneiss Complex. Geochim Cosmochim Acta 235:450–462

    Google Scholar 

  • Eriksson S (1982) Aspects of the petrochemistry of the Phalaborwa Igneous Complex, northeastern Transvaal, South Africa. Unpublished PhD Thesis, University of the Witwatersrand, Johannesburg

  • Eriksson SC (1989) Phalaborwa: a saga of magmatism, metasomatism and miscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 221–254

    Google Scholar 

  • Farver JR, Giletti BJ (1989) Oxygen and strontium diffusion kinetics in apatite and potential applications to thermal history determinations. Geochim Cosmochim Acta 53:1621–1631

    Google Scholar 

  • Frick C (1975) The Phalaborwa syenite intrusions. Trans Geol Soc S Africa 78:201–213

    Google Scholar 

  • Fortier SM, Lüttge A (1995) An experimental calibration of the temperature dependence of oxygen isotope fractionation between apatite and calcite at high temperatures (350–800 C). Chem Geol 125:281–290

    Google Scholar 

  • Fourie PJ, De Jager DH (1986) Phosphate in the Phalaborwa complex. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 2239–2253

    Google Scholar 

  • Giebel RJ, Gauert CD, Marks MA, Costin G, Markl G (2017) Multi-stage formation of REE minerals in the Palabora Carbonatite Complex, South Africa. Am Miner 102:1218–1233

    Google Scholar 

  • Giebel RJ, Marks MA, Gauert CD, Markl G (2019) A model for the formation of carbonatite-phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa. Lithos 324:89–104

    Google Scholar 

  • Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am Miner 97:1103–1115

    Google Scholar 

  • Goodenough KM, Schilling J, Jonsson E et al (2016) Europe's rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72:838–856

    Google Scholar 

  • Götte J (2009) Petrological modifications in continental target rocks from terrestrial impact structures: Evidence from cathodoluminescence. In: Gucsik A (ed) Cathodoluminescence and its application in the planetary sciences. Springer-Verlag, Berlin, pp 45–60

    Google Scholar 

  • Groves DI, Vielreicher NM (2001) The Phalabowra (Palabora) carbonatite-hosted magnetite–copper sulfide deposit, South Africa: an end-member of the iron-oxide copper–gold–rare earth element deposit group? Miner Dep 36:189–194

    Google Scholar 

  • Habermann D, Neuser RD, Richter DK (2000) Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Heidelberg, pp 331–358

    Google Scholar 

  • Hanekom HJ (1965) The geology of the palabora igneous complex. South Africa Geological Survey Handbook, Memoir

    Google Scholar 

  • Harlov DE, Andersson UB, Förster HJ, Nyström JO, Dulski P, Broman C (2002) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem Geol 191:47–72

    Google Scholar 

  • Harlov DE, Wirth R, Förster HJ (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Miner Petrol 150:268–286

    Google Scholar 

  • Hayward CL, Jones AP (1991) Cathodoluminescence petrography of Middle Proterozoic extrusive carbonatite from Qasiarsuk, South Greenland. Min Mag 55:591–603

    Google Scholar 

  • Haynes EA, Moecher DP, Spicuzza MJ (2003) Oxygen isotope composition of carbonates, silicates, and oxides in selected carbonatites: constraints on crystallization temperatures of carbonatite magmas. Chem Geol 193:43–57

    Google Scholar 

  • Hennig-Michaeli C (1968) Mikroskopische untersuchungen an hanstucken der kupfererzlagerstatte am Loolekop im Phalaborwa Komplex, NE-Transvaal. Unpublished Master thesis, Institut fur Mineralogie und Lagerstattenlehre der RW and Aachen, Germany

  • Ihlen PM, Schiellerup H, Gautneb H, Skår Ø (2014) Characterization of apatite resources in Norway and their REE potential—a review. Ore Geol Rev 58:126–147

    Google Scholar 

  • Heinrich EW (1970) The Palabora carbonatitic complex; a unique copper deposit. Can Miner 10:585–598

    Google Scholar 

  • Kempe U, Götze J (2002) Cathodoluminecence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Min Mag 66:151–172

    Google Scholar 

  • Krneta S, Ciobanu C, Cook N, Ehrig K (2018) Numerical modeling of REE fractionation patterns in fluorapatite from the Olympic Dam Deposit (South Australia). Minerals 8:342

    Google Scholar 

  • Jackson WD, Christiansen G (1993) International strategic minerals inventory summary report-rare-earth Oxides. US Government Printing Office, Washington, p 930

    Google Scholar 

  • Jochum KP, Weis U, Stoll B et al (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Google Scholar 

  • Li X, Zhou MF (2015) Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe–Cu–(REE) deposit, Southwest China. Geochim Cosmochim Acta 166:53–73

    Google Scholar 

  • Li Z, Duan D, Jiang S, Ma Y, Yuan H (2018) In situ analysis of major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit, Edong ore district: Implications for petrogenesis and mineralization. J Earth Sci 29:295–306

    Google Scholar 

  • Lombaard AF, Ward-Able NM, Bruce RW (1964) The exploration and main geological features of the copper deposit in carbonatite at Loolekop, Palabora complex. Geol Some Ore Dep S Afr 2:315–337

    Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

    Google Scholar 

  • Mariano AN (1989) Nature of economic mineralization in carbonatites and related rocks. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 149–176

    Google Scholar 

  • Mariano AN, Mariano A (2012) Rare earth mining and exploration in North America. Elements 8:369–376

    Google Scholar 

  • Marks MA, Wenzel T, Whitehouse MJ et al (2012) The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach. Chem Geol 291:241–255

    Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of geological materials. Hyman, Boston, 146 p

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • McLemore VT, Barker JM (1987) Some geological application of cathodoluminescence, examples from the Lemitar Mountains and Riley travertine, Socorro County, New Mexico. New Mexico Geology, 37–40

  • Milani L, Bolhar R, Frei D, Harlov DE, Samuel VO (2017) Light rare earth element systematics as a tool for investigating the petrogenesis of phoscorite-carbonatite associations, as exemplified by the Phalaborwa Complex, South Africa. Miner Dep 52:1105–1125

    Google Scholar 

  • Orris GJ, Chernoff CB (2002) Data set of world phosphate mines, deposits, and occurrences: Part B Location and mineral economic data. US Department of the Interior, US Geological Survey, Reston

    Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Miner Geochem 48:13–49

    Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518

    Google Scholar 

  • Pell J (1996) Mineral deposits associated with carbonatites and related alkaline igneous rocks. In: Mitchell RH (ed) Undersaturated alkaline rocks: Mineralogy, petrogenesis, and economic potential. Short course series. Mineralogical Association of Canada, Winnipeg, pp 271–310

    Google Scholar 

  • Pineau F, Javoy M, Allegre CJ (1973) Etude systematique des isotopes de l'oxygene, du carbone et du strontium dans les carbonatites. Geochim Cosmochim Acta 37:2363–2377

    Google Scholar 

  • Potts PJ, Tindle AG (1989) Analytical characteristics of a multilayer dispersion element (2d=60Å) in the determination of fluorine in minerals by electron microprobe. Miner Mag 53:357–362

    Google Scholar 

  • Reischmann T (1995) Precise U/Pb age determination with baddeleyite (ZrO2), a case study from the Phalaborwa igneous complex, South Africa. S Afr J Geol 98:1–4

    Google Scholar 

  • Riishuus MS, Peate DW, Tegner C, Wilson JR, Brooks CK, Harris C (2006) Temporal evolution of a long-lived syenitic centre: the Kangerlussuaq Alkaline Complex, East Greenland. Lithos 92:276–299

    Google Scholar 

  • Rudashevsky NS, Kretser YL, Rudashevsky VN, Sukharzhevskaya ES (2004) A review and comparison of PGE, noble-metal and sulphide mineralization in phoscorites and carbonatites from Kovdor and Phalaborwa. In: Wall F, Zaitsev A (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10, pp 375–405

  • Roux EH, Goodey JG, Wepener EF, Hodierne KR (1989) Phosphate in South Africa. J S Afr Inst Min Metal 89:129–139

    Google Scholar 

  • Santos RV, Clayton RN (1995) The carbonate content in high-temperature apatite: an analytical method applied to apatite from the Jacupiranga alkaline complex. Am Miner 80:336–344

    Google Scholar 

  • Stormer JC, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Miner 78:641–648

    Google Scholar 

  • Suwa K, Oana S, Wada H, Osaki S (1975) Isotope geochemistry and petrology of African carbonatites. Elsevier, Pergamon, pp 735–745

    Google Scholar 

  • Sun Y, Wiedenbeck M, Joachimski MM, Beier C, Kemner F, Weinzierl C (2016) Chemical and oxygen isotope composition of gem-quality apatites: implications for oxygen isotope reference materials for secondary ion mass spectrometry (SIMS). Chem Geol 440:164–178

    Google Scholar 

  • Taylor HP, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from Laacher See district, West Germany and Alnø district, Sweden. Geochim Cosmochim Acta 31:407–430

    Google Scholar 

  • Tichomirowa M, Grosche G, Götze J, Belyatsky BV, Savva EV, Keller J, Todt W (2006) The mineral isotope composition of two Precambrian carbonatite complexes from the Kola Alkaline Province-Alteration versus primary magmatic signatures. Lithos 91:229–249

    Google Scholar 

  • Trotter JA, Williams IS, Barnes CR, Lécuyer C, Nicoll RS (2008) Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550–554

    Google Scholar 

  • Vartiainen H, Paarma H (1979) Geological characteristics of the Sokli Carbonatite Complex, Finland. Econ Geol 74:1296–1306

    Google Scholar 

  • Verwoerd WJ, Du Toit MC (2006) The Phalaborwa and Schiel complexes. In: Johnson MR, et al. (eds) The geology of South Africa. Council for Geosciences, Pretoria, pp 291–318

    Google Scholar 

  • Walter AV, Nahon D, Flicoteaux R, Girard JP, Melfi A (1995) Behaviour of major and trace elements and fractionation of REE under tropical weathering of a typical apatite-rich carbonatite from Brazil. Earth Planet Sci Lett 136:591–602

    Google Scholar 

  • Waychunas GA (2002) Apatite luminescence. In: Kohn MJ, Rakovan J, Hughes JM (eds) Reviews in mineralogy and geochemistry, vol 48. Phosphates Mineralogical Society of America, Washington, pp 701–742

    Google Scholar 

  • Wu FY, Yang YH, Li QL, Mitchell RH, Dawson JB, Brandl G, Yuhara M (2011) In situ determination of U-Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite complex, South Africa. Lithos 127:309–322

    Google Scholar 

  • Yang YH, Wu FY, Yang JH et al (2014) Sr and Nd isotopic compositions of apatite reference materials used in U-Th–Pb geochronology. Chem Geol 385:35–55

    Google Scholar 

  • Yang JH, Kang LF, Peng JT, Zhong H, Gao JF, Liu L (2018) In situ elemental and isotopic compositions of apatite and zircon from the Shuikoushan and Xihuashan granitic plutons: Implication for Jurassic granitoid-related Cu-Pb-Zn and W mineralization in the Nanling Range, South China. Ore Geol Rev 93:382–403

    Google Scholar 

  • Yuhara M, Kohno M, Kagami H, Hiroi Y, Tsuchiya N (2003) Geochemistry of syenite of the Phalaborwa carbonatite complex, South Africa. Polar Geosci 16:176–195

    Google Scholar 

  • Yuhara M, Hirahara Y, Nishi N, Kagami H (2005) Rb-Sr, Sm-Nd ages of the phalaborwa carbonatite complex, South Africa. Polar Geosci 18:101–113

    Google Scholar 

  • Zeng LP, Zhao XF, Li XC, Hu H, McFarlane C (2016) In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism. Am Miner 101:2468–2483

    Google Scholar 

  • Zhao XF, Zhou MF, Gao JF, Li XC, Li JW (2015) In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Miner Dep 50:871–884

    Google Scholar 

  • Zigaitė Z, Whitehouse M (2014) Stable oxygen isotopes of dental biomineral: differentiation at the intra-and inter-tissue level of modern shark teeth. GFF 136:337–340

    Google Scholar 

  • Zirner AL, Marks MA, Wenzel T, Jacob DE, Markl G (2015) Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilímaussaq complex, South Greenland. Lithos 228:12–22

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Ulrich Schüssler and Stefan Höhn for assistance in acquiring electron microprobe analyses at the University of Würzburg. Samples were provided by Grant Cawthorn who gratefully acknowledges the hospitality of the management and geological staff at Foskor (Pty) Ltd for many repeated student excursions to their property. The LA-ICP-MS laboratory from GeoRessources was partly funded by the French National Research Agency through the national program “Investissements d’avenir” of the Labex Ressources21 with the reference ANR-10-LABX-21-RESSOURCES21. The authors are also grateful to Daniela Rubatto (Associate Editor), Sam Broom-Fendley (Reviewer) and an anonymous reviewer, for helpful remarks on the manuscript. Their comments have contributed to improve substantially the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Decrée.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Supplementary file2 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decrée, S., Cawthorn, G., Deloule, E. et al. Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA-ICPMS and in-situ O and Sr isotope analyses. Contrib Mineral Petrol 175, 34 (2020). https://doi.org/10.1007/s00410-020-1671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-1671-6

Keywords

Navigation