Skip to main content
Log in

Diamond-forming HDFs tracking episodic mantle metasomatism beneath Nyurbinskaya kimberlite pipe (Siberian craton)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present a new dataset on the composition of high-density fluids (HDFs) in cloudy (n = 25), coated (n = 10) and cuboid (n = 10) diamonds from the Nyurbinskaya kimberlite pipe. These diamonds represent different populations each showing distinct growth histories. The cores of coated diamonds display multiple growth stages and contrasting sources of carbon. Fibrous coats and cuboid diamonds have similar carbon isotopes and nitrogen systematics, suggesting their formation in the last metasomatic events related to kimberlite magmatism, as is common for most such diamonds worldwide. The HDFs in most of these diamonds span a wide range from low-Mg carbonatitic to hydrous silicic compositions. The major- and trace-element variations suggest that the sources for such HDFs range in composition between the depleted mantle and more fertile mantle reservoirs. Hydrous-silicic HDFs could originate from a 13C-enriched source, which originates through subduction of crustal metasedimentary material. Percolation of such HDFs through carbonated eclogites and peridotites facilitates the formation of cuboid diamonds and fibrous coats in the mantle section beneath the corresponding area of the Siberian craton. Cloudy diamonds represent an apparently older population, reflecting continuous diamond formation predominantly from high-Mg carbonatitic HDFs that caused discrete episodes of diamond precipitation. Their high Mg# and enrichment in incompatible elements support a metasomatized peridotitic source for these HDFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agashev AM, Watanabe T, Budaev DA, Pokhilenko NP, Fomin AS, Maehara K, Maeda J (2001) Geochemistry of kimberlites from Nakyn field, Siberia: evidence for unique source composition. Geology 29(3):267–270

    Google Scholar 

  • Agashev AM, Pokhilenko NP, Tolstov AV, Polyanichko VV, Malkovets VG, Sobolev NV (2004) New age data on kimberlites from the Yakutian diamondiferous province. Dokl Earth Sci 399(8):1142–1145

    Google Scholar 

  • Araujo DP, Griffin WL, O’Reilly S, Grant KJ, Ireland T, Holden P, Achterbergh P (2009) Microinclusions in monocrystalline octahedral diamonds and coated diamonds from Diavik, Slave Craton: clues to diamond genesis. Lithos 112:724–735

    Google Scholar 

  • Aulbach S, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J Petrol 48:1843–1873

    Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace elementpartitioning between clinopyroxene and melt in silicate andcarbonate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Google Scholar 

  • Boyd SR, Pillinger CT (1994) A preliminary-study of N15 N14 in octahedral growth form diamonds. Chem Geol 116(1–2):43–59

    Google Scholar 

  • Boyd SR, Pillinger CT, Milledge HJ, Seal MJ (1992) C-isotopic and N-isotopic composition and the infrared-absorption spectra of coated diamonds-evidence for the regional uniformity of CO2–H2O rich fluids in lithospheric mantle. Earth Planet Sci Lett 108(1–3):139–150

    Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1995) Infrared absorption by the B nitrogen aggregate in diamond. Philos Mag B 72:351–361

    Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821

    Google Scholar 

  • Broadley MB, Kagi H, Burgess R, Zedgenizov D, Mikhail S, Almayrac M, Ragozin A, Pomazansky B, Sumino H (2018) Plume-lithosphere interaction, and the formation of fibrous diamonds. Geochem Perspectiv Lett 8:26–30

    Google Scholar 

  • Carswell DA, Dawson JB, Gibb FGF (1981) Equilibration conditions of upper-mantle eclogites: implications for kyanite-bearing and diamondiferous varieties. Mineral Mag 44:79–89

    Google Scholar 

  • Cartigny P, Harris JW, Javoy M (1999) Eclogitic, peridotitic, metamorphic diamonds and the problems of carbon recycling: the case of Orapa (Botswana). In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (Eds) J.B. Dawson Volume, Proceedings of the 7th International Kimberlite Conference. Cape Town, pp 117–124

  • Cartigny P, Harris JW, Javoy M (2001) Diamond genesis, mantle fractionation and mantle nitrogen content: a study of δ13C-N concentrations in diamonds. Earth Planet Sci Lett 185:85–98

    Google Scholar 

  • Cartigny P, Palot M, Thomassot E, Harris JW (2014) Diamond formation: a stable isotope perspective. Ann Rev Earth Planet Sci 42:699–732

    Google Scholar 

  • Choukroun M, O’Reilly SY, Griffin WL, Pearson NJ, Dawson JB (2005) Hf isotopes of MARID (mica-amphibole- rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology 33:45–48

    Google Scholar 

  • Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671

    Google Scholar 

  • Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci USA 103:15759–15764

    Google Scholar 

  • Fitzsimons ICW, Harte B, Chinn IL, Gurney JJ, Taylor WR (1999) Extreme chemical variation in complex diamonds from George Creek, Colorado: a SIMS study of carbon isotope composition and nitrogen abundance. Mineral Mag 63(6):857–878

    Google Scholar 

  • Fitzsimons ICW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and analytical precision. Mineral Mag 64(1):59–83

    Google Scholar 

  • Foley SF (2008) Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci 1:503–510

    Google Scholar 

  • Gervasoni F, Klemme S, Rorhbach A, Grützner T (2017) Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos 282–283:173–186

    Google Scholar 

  • Golovin AV, Sharygin IS, Kamenetsky VS, Korsakov AV, Yaxley GM (2018) Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem Geol 483:261–274

    Google Scholar 

  • Golovin AV, Sharygin IS, Korsakov AV, Kamenetsky VS, Abersteiner A (2020) Can primitive kimberlite melts be alkali-carbonate liquids: composition of the melt snapshots preserved in deepest mantle xenoliths. J Raman Spectrosc 51(9):1849–1867

    Google Scholar 

  • Goncharov AG, Ionov DA, Doucet LS, Pokhilenko LN (2012) Thermal state, oxygen fugacity and C–O–H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet Sci Lett 357–358:99–110

    Google Scholar 

  • Goss JP, Briddon PR, Hill V, Jones R, Rayson MJ (2014) Identification of the structure of the 3107 cm-1 H-related defect in diamond. J Phys Conden Matter 26:145801

    Google Scholar 

  • Grégoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petrol 142:603–625

    Google Scholar 

  • Gubanov N, Zedgenizov D, Sharygin I, Ragozin A (2019) Origin and evolution of high-Mg carbonatitic and low-Mg carbonatitic to silicic high-density fluids in coated diamonds from Udachnaya kimberlite pipe. Minerals 9(12):734

    Google Scholar 

  • Gurney JJ, Helmstaedt HH, Richardson SH, Shirey SB (2010) Diamonds through time. Econ Geol 105:689–712

    Google Scholar 

  • Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368

    Google Scholar 

  • Hammounda T, Keshav S (2015) Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem Geol 418:171–188

    Google Scholar 

  • Harte B, Fitzsimons ICW, Harris JW, Otter ML (1999) Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province. S Afr Mineral Mag 63(6):829–856

    Google Scholar 

  • Ickert RB, Stachel T, Stern RA, Harris JW (2013) Diamond from recycled crustal carbon documented by coupled δ18O-δ13C measurements of diamonds and their inclusions. Earth Planet Sci Lett 364:85–97

    Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332

    Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2004) Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South African. Geochim Cosmochim Acta 68:2561–2575

    Google Scholar 

  • Jablon BM, Navon O (2016) Most diamonds were created equal. Earth Planet Sci Lett 443:41–47

    Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Google Scholar 

  • Jones R, Briddon PR, Öberg S (1992) First-principles theory of nitrogen aggregates in diamond. Philos Mag Lett 66(2):67–74

    Google Scholar 

  • Kiflawi I, Mayer AE, Spear PM, van Wyk JA, Woods GS (1994) Woods, infrared absorption by the single nitrogen and A defect centres in diamond. Philos Mag B 69:1141–1147

    Google Scholar 

  • Kiseeva ES, Yaxley GM, Hermann J, Litasov KD, Rosenthal A, Kamenetsky VS (2012) An experimental study of carbonated eclogite at 3.5–5.5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol 53:727–759

    Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2004) Mantle fluid evolution—a tale of one diamond. Lithos 77:243–253

    Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71:723–744

    Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112S:648–659

    Google Scholar 

  • Klein-BenDavid O, Pearson DG, Nowell GM, Ottley C, McNeill JCR, Cartigny P (2010) Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth Planet Sci Lett 289:123–133

    Google Scholar 

  • Kopylova M, Navon O, Dubrovinsky L, Khachatryan G (2010) Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet Sci Lett 291:126–137

    Google Scholar 

  • Lavrent’ev YuG, Karmanov NS, Usova LV (2015) Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russ Geol Geophys 56:1154–1161

    Google Scholar 

  • Leahy K, Taylor WR (1997) The influence of the Glennie domain deep structure on the diamonds in Saskatchewan kimberlites. Russ Geol Geophys 38(2):481–491

    Google Scholar 

  • Litasov KD, Safonov OG, Ohtani E (2010) Origin of Cl-bearing silica-rich melt inclusions in diamond: experimental evidences for eclogite connection. Geology 38:1131–1134

    Google Scholar 

  • Litvin YuA, Spivak AV, Kuzyura AV (2016) Fundamentals of the mantle carbonatite concept of diamond genesis. Geochem Int 54(10):839–857

    Google Scholar 

  • Logvinova AM, Wirth R, Tomilenko AA, Afanas’ev VP, Sobolev NV (2011) The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian Platform. Russ Geol Geophys 52(11):1286–1297

    Google Scholar 

  • Malkovets VG, Rezvukhin DI, Belousova EA, Griffin WL, Sharygin IS, Tretiakova IG, Gibsher AA, O’Reilly SY, Kuzmin DV, Litasov KD, Logvinova AM (2016) Cr-rich rutile: a powerful tool for diamond exploration. Lithos 265:304–311

    Google Scholar 

  • Mattey DP (1987) Carbon isotopes in the mantle. Terra Cognita 7:31–37

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Google Scholar 

  • Mikhail S, Verchovsky AB, Howell D, Hutchison MT, Southworth R, Thomson AR, Warburton P, Jones AP, Milledge HJ (2014) Constraining the internal variability of the stable isotopes of carbon and nitrogen within mantle diamonds. Chem Geol 366:14–23

    Google Scholar 

  • Miller CE, Kopylova M, Smith E (2014) Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation. Mineral Petrol 108:317–331

    Google Scholar 

  • Moore M, Lang AR (1972) On the internal structure of natural diamonds of cubic habit. Philos Mag 26:1313–1325

    Google Scholar 

  • Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789

    Google Scholar 

  • Navon O, Klein-BenDavid O, Weiss Y (2008) Diamond-forming fluids: their origin and evolution. In: The Abstracts of 9th Intern Kimb Conf: A-00121

  • O’Reilly SY, Griffin WL (2013) Mantle Metasomatism. In: Harlow DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes. Springer, New York, pp 471–534

    Google Scholar 

  • Orlov YuL (1977) Mineralogy of diamond. Wiley, New York, p 234

    Google Scholar 

  • Palyanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (2002) Diamond formation from mantle carbonate fluids. Nature 400:417–418

    Google Scholar 

  • Palyanov YuN, Shatsky VS, Sobolev NV, Sokol AG (2007) The role of mantle ultrapotassic fluids in diamond formation. Proc Natl Acad Sci USA 104(22):9122–9127

    Google Scholar 

  • Perchuk LL, Safonov OG, Yapaskurt VO, Barton JM (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review. Lithos 60:89–111

    Google Scholar 

  • Rege S, Jackson S, Griffin WL, Davies RM, Pearson NJ, O’Reilly SY (2005) Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 20:601–611

    Google Scholar 

  • Riches AJV, Liu Y, Day JMD, Spetsius ZV, Taylor LA (2010) Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120:368–378

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) Review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110

    Google Scholar 

  • Rosen OM, Condie KC, Natapov LM, Nozhkin AD (1994) Archean and early proterozoic evolution of the siberian craton: a preliminary assessment. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 411–459

    Google Scholar 

  • Rosen OM, Levsky LK, Zhuravlev DZ, Rotman AYa, Spetsius ZV, Makeev AF, Zinchuk NN, Manakov AV, Serenko VP (2006) Palaeoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigr Geol Correl 14:581–601

    Google Scholar 

  • Safonov OG, Perchuk LL, Litvi YA (2007) Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle. Earth Planet Sci Lett 253:112–128

    Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precamb Res 106:117–134

    Google Scholar 

  • Schneider M, Eggler H (1986) Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochim Cosmochim Acta 50:711–724

    Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 52:761–771

    Google Scholar 

  • Shatskiy A, Litasov KD, Sharygin IS, Ohtani E (2017) Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Res 45:208–227

    Google Scholar 

  • Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F, Nimis P, Pearson G, Sobolev NV, Walter MJ (2013) Diamonds and the geology of mantle carbon. Rev Mineral Geochem 75:355–421

    Google Scholar 

  • Skuzovatov SYu, Zedgenizov DA (2019) Protracted fluid-metasomatism of the Siberian diamondiferous subcontinental lithospheric mantle as recorded in coated, cloudy and monocrystalline diamonds. Mineral Petrol 113(3):285–306

    Google Scholar 

  • Skuzovatov SYu, Zedgenizov DA, Shatsky VS, Ragozin AL, Kuper KE (2011) Composition of cloudy microinclusions in octahedral diamonds from the Internatsional’naya kimberlite pipe (Yakutia). Russ Geol Geophys 52(1):85–96

    Google Scholar 

  • Skuzovatov SYu, Zedgenizov DA, Ragozin AL, Shatsky VS (2012) Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe (Yakutia). Russ Geol Geophys 53(11):1197–1208

    Google Scholar 

  • Skuzovatov SYu, Zedgenizov DA, Howell DA, Griffin W (2016) Various growth environments of cloudy diamonds from the Malobotuobia kimberlite field (Siberian craton). Lithos 265:96–107

    Google Scholar 

  • Smart KA, Chacko T, Stachel T, Muehlenbachs K, Stern RA, Heaman LM (2011) Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochim Cosmochim Acta 75:6027–6047

    Google Scholar 

  • Sobolev NV (1974) Deep-seated inclusions in kimberlites and the problem of the composition of the Upper Mantle. American Geophysical Union, Washington, D.C., p 279

    Google Scholar 

  • Sobolev EV, Lisoivan VI (1978) Nitrogen centers and the growth of natural diamond crystals. In: Kuznetsov VA (ed) Problems of crustal and upper-mantle petrology, transactions of the Institute of Geology and Geophysics, Issue 403. Nauka, Novosibirsk, pp 245–255 ((in Russian))

    Google Scholar 

  • Spetsius ZV, Cliff J, Griffin WL, O’Reilly SY (2017) Carbon isotopes of eclogite-hosted diamonds from the Nyurbinskaya kimberlite pipe, Yakutia: the metasomatic origin of diamonds. Chem Geol 455:131–147

    Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Google Scholar 

  • Stachel T, Luth RW (2015) Diamond formation—where, when and how? Lithos 220:200–220

    Google Scholar 

  • Stachel T, Harris JW, Muehlenbachs K (2009) Sources of carbon in inclusion bearing diamonds. Lithos 112:625–637

    Google Scholar 

  • Stagno V, Frost DJ (2010) Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett 300(1–2):72–84

    Google Scholar 

  • Sun J, Kostrovitsky SI, Tappe S, Liu C-Z, Skuzovatov SYu, Wu F-Y (2018) Mantle sources of kimberlites through time: a U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chem Geol 479:228–240

    Google Scholar 

  • Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable conditions. J Crystal Growth 99:1156–1161

    Google Scholar 

  • Sverjensky DA, Huang F (2015) A new mechanism for diamond formation. Nat Commun 6:8702

    Google Scholar 

  • Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005) Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Mineral Petrol 150:505–522

    Google Scholar 

  • Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite; implications for metasomatism in the continental lithospheric mantle. Am Mineral 77(7–8):784–794

    Google Scholar 

  • Thomassot E, Cartigny P, Harris JW, Viljoen KSF (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371

    Google Scholar 

  • Timmerman S, Jaques AL, Weiss Y, Harris JW (2018) N-δ13C-inclusion profiles of cloudy diamonds from Koffiefontein: evidence for formation by continuous Rayleigh fractionation and multiple fluids. Chem Geol 483:31–46

    Google Scholar 

  • Tomlinson EL, Jones AP, Harris JW (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet Sci Lett 250:581–595

    Google Scholar 

  • Wang W (1998) Formation of diamond with mineral inclusions of “mixed” eclogite and peridotite paragenesis. Earth Planet Sci Lett 160:831–843

    Google Scholar 

  • Weiss Y, Kessel R, Griffin WL, Kiflawi I, Klein-BenDavid O, Bell DR, Harris JW, Navon O (2009) A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112:660–674

    Google Scholar 

  • Weiss Y, Kiflawi I, Navon O (2010) IR spectroscopy: quantitative determination of the mineralogy and bulk composition of fluid microinclusions in diamonds. Chem Geol 275:26–34

    Google Scholar 

  • Weiss Y, Griffin WL, Bell DR, Navon O (2011) High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere. Earth Planet Sci Lett 309:337–347

    Google Scholar 

  • Weiss Y, Griffin WL, Navon O (2013) Diamond-forming fluids in fibrous diamonds: the trace element perspective. Earth Planet Sci Lett 376:110–125

    Google Scholar 

  • Weiss Y, Kiflawi I, Davies N, Navon O (2014) High-density fluids and the growth of monocrystalline diamonds. Geochim Cosmochim Acta 141:145–159

    Google Scholar 

  • Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ (2015) Highly saline fluids from a subducted slab as the source for fluid-rich diamonds. Nature 524:339–342

    Google Scholar 

  • Weiss Y, Class C, Goldstein SL, Winckler G (2017) Ages of mantle metasomatism from U–Th–He systematics of diamond-forming C–O–H fluids. In: 11th International Kimberlite Conference Extended Abstract No. 11IKC-4460

  • Weiss Y, Navon O, Goldstein SL, Harris JW (2018) Inclusions in diamonds constrain thermo-chemical conditions during Mesozoic metasomatism of the Kaapvaal cratonic mantle. Earth Planet Sci Lett 491:134–147

    Google Scholar 

  • Wiggers de Vries DF, Bulanova GP, De Corte K, Pearson DG, Craven JA, Davies GR (2013) Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: evidence for episodic diamond formation beneath the Siberian Craton. Geochim Cosmochim Acta 100:176–199

    Google Scholar 

  • Woods GS (1986) Platelets and the infrared absorption of type Ia diamonds. Proc Royal Soc Lond A407:219–238

    Google Scholar 

  • Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical fluids in upwelling mantle. J Petrol 41:1195–1206

    Google Scholar 

  • Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Mineral Petrol 146(5): 606–619

  • Zaitsev AM (2001) Optical properties of diamond: a data handbook. Springer, Berlin Heidelberg, p 502

    Google Scholar 

  • Zedgenizov DA, Kagi HK, Shatsky VS, Sobolev NV (2004) Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy. Mineral Mag 68:61–73

    Google Scholar 

  • Zedgenizov DA, Harte B, Shatsky VS, Politov AA, Rylov GM, Sobolev NV (2006) Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib Mineral Petrol 151:45–57

    Google Scholar 

  • Zedgenizov DA, Rege S, Griffin WL, Kagi H, Shatsky VS (2007) Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. Chem Geol 240:151–162

    Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647

    Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL (2011) Fibrous diamonds from the placers of the northeastern Siberian Platform: carbonate and silicate crystallization media. Russ Geol Geophys 52:1298–1309

    Google Scholar 

  • Zedgenizov DA, Rubatto D, Shatsky VS, Ragozin AL, Kalinina VV (2016) Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian craton: trace elements and coupled δ13C-δ18O signatures in diamonds and garnet inclusions. Chem Geol 422:46–59

    Google Scholar 

  • Zedgenizov DA, Kalinin AA, Kalinina VV, Palyanov YuN, Shatsky VS (2017) Nitrogen and hydrogen aggregation in natural octahedral and cuboid diamond. Geochem J 51:181–192

    Google Scholar 

Download references

Acknowledgements

The manuscript has benefited significantly from critical reviews by Suzette Timmerman and an anonymous referee, and the editorial remarks of Daniela Rubatto. The geochemical investigations in this study have been supported by the Russian Science Foundation (Grant No 16-17-10067). The sample preparation, study of morphology and FTIR measurements were a part of state assignment project of IGM SB RAS. EDS measurements have been funded from Grant No 20-05-00338 of Russian Foundation for Basic Research. The carbon-isotope measurements are contribution 1536 from the ARC Centre of Excellence for Core to Crust Fluid Systems and 1406 from the GEMOC Key Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Zedgenizov.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zedgenizov, D.A., Skuzovatov, S.Y., Griffin, W.L. et al. Diamond-forming HDFs tracking episodic mantle metasomatism beneath Nyurbinskaya kimberlite pipe (Siberian craton). Contrib Mineral Petrol 175, 106 (2020). https://doi.org/10.1007/s00410-020-01743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01743-8

Keywords

Navigation