Skip to main content
Log in

The role of crustal contamination in the petrogenesis of nepheline syenite to granite magmas in the Ditrău Complex, Romania: evidence from O-, Nd-, Sr- and Pb-isotopes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Ditrău Complex of the Carpathian Mountains in Romania is a Mesozoic igneous complex (~ 200–230 Ma) generated in a continental rift environment. Felsic rocks of the Ditrău Complex consist of nepheline syenite, syenite, quartz syenite, quartz monzonite, monzonite and granite. The Ditrău rocks have mantle-like ɛNd values that range from + 0.8 to + 5.5 ‰. High-temperature equilibrium O-isotope fractionations between minerals are generally preserved, although some subsolidus O-isotope re-equilibration occurred. Magma δ18O values estimated from quartz, feldspar and amphibole (5.7–11.7‰) are higher than those estimated from zircon. We suggest that this difference results from continuous crustal contamination, with zircon recording the early, high-temperature δ18O values, and quartz and the other silicate δ18O values, reflecting a combination of subsequent crustal contamination and deuteric alteration. Negative correlations between calculated magma δ18O values and Na2O and Al2O3 content and εNd are consistent with the spectrum of felsic rocks from nepheline syenite to granite resulting from an increase crustal input. Both O- and Nd-isotope compositions are consistent with a dominantly mantle origin of hornblendites, diorites and nepheline syenites. The Nd- and O-isotope composition of the silica-oversaturated rocks can be explained by the assimilation of 20–60% upper crustal melts into the re-injected mafic alkaline parent magma to generate the Ditrău syenites, quartz syenites, quartz monzonites and granites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Almási E (2015) A Ditrói Alkáli Masszívum ultramafikus kumulátum kőzeteinek petrogenetikája. Szegedi Tudományegyetem—PhD dissertation, University of Szeged

  • Ashwal LD, Torsvik T, Horvath P, Harris C, Webb S, Werner S, Corfu F (2016) A Mantle-derived Origin for Mauritian Trachytes. J Petrol 57:1645–1675

    Google Scholar 

  • Balintoni I, Gheucă I, Vodă A (1983) Alpine and Hercynian overthrust Napps from Central and Southern Areas of the East Carpathians Crystalline Mesozoic Zone. Anuarul Instutului de Geologie şi Geofizică, LX:15–22

  • Balintoni I, Balica C, Ducea M, Chen F, Hann HP, Sabliovschi V (2009) Late cambrian-early ordovician gondwanan terranes in the Romanian Carpathians: a zircon U/Pb provenance study. Gondwana Res 16:119–133

    Google Scholar 

  • Balintoni I, Balica C, Ducea H, Horst-Peter H (2014) Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geosci Front 5:395–411

    Google Scholar 

  • Batki A, Pál-Molnár E, Dobosi G, Skelton A (2014) Petrogenetic significance of ocellar camptonite dykes in the Ditrău Alkaline Massif, Romania. Lithos 200–201:181–196

    Google Scholar 

  • Brotzu P, Gomes CB, Melluso L, Morbidelli L, Morra V, Ruberti E (1997) Petrogenesis of coexisting SiO2-undersaturated to SiO2-oversaturated felsic igneous rocks: the alkaline complex of Itatiaia, southeastern Brazil. Lithos 40 (2–4):133–156

    Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochem 43:1–81

    Google Scholar 

  • Clayton RN, Goldsmith JR, Mayeda TK (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim Cosmochim Acta 53:725–733

    Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental constraints. Am Miner 71:317–324

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Miner Petrol 80(2):189–200

    Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238

    Google Scholar 

  • Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual source model. Geology 19:163–166

    Google Scholar 

  • Criss RE, Taylor Jr HP (1986) Meteoric-hydrothermal systems. In: Valley JW, Taylor Jr HP, O’Neill JR (Eds), Stable Isotopes in High Temperature Geological Processes. Mineral Soc Am Rev Mineral 16:373–424

  • Dallmeyer DR, Kräutner H-G, Neubauer F (1997) Middle-late Triassic 40Ar/39Ar hornblende ages for early intrusions within the Ditrău alkaline massif, Rumania: Implications for Alpine rifting in the Carpathian orogen. Geol Carpath 48:347–352

    Google Scholar 

  • Dunworth EA, Bell K (2001) The Turiy massif, Kola peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. J Petrol 42:377–405

    Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134

    Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644

    Google Scholar 

  • Edgar AD (1974) On the use of the term ‘Agpaitic’ Mineral Magazine, 39: 729-30

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Google Scholar 

  • Fall A, Bodnar RJ, Szabó CS, Pál-Molnár E (2007) Fluid evolution in the nepheline syenites of the Ditrău Alkaline Massif, Transylvania, Romania. Lithos 95:331–345

  • Foland KA, Landoll JD, Henderson CMB, Chen JF (1993) Formation of cogenetic quartz and nepheline syenites. Geochim Cosmochim Acta 57:697–704

    Google Scholar 

  • Fourie DS, Harris C (2011) O-isotope study of the Bushveld Complex granites and granophyres: constraints on source composition, and assimilation. J Petrol 52:2221–2242

    Google Scholar 

  • Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49:1955–1969

    Google Scholar 

  • Frost CD, Frost BR (2011) On ferroan (A-type) granites: their compositional variability and modes of origin. J Petrol 52:39–53

    Google Scholar 

  • Galer SJ, Abouchami W (1998) Practical application of lead triple spiking for correction of instrumental mass discrimination. Mineral Mag 62A:491–492

    Google Scholar 

  • Galli A, Grassi D, Sartori G, Gianola O, Burg J-P, Schmidt M (2019) Jurassic carbonatite and alkaline magmatism in the Ivrea zone (European Alps) related to the breakup of Pangea. Geology 47:199–202

    Google Scholar 

  • Giletti BJ (1986) Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218–229

    Google Scholar 

  • Giret A, Lameyre J (1985) Inverted alkaline-tholeiitic sequences related to lithospheric thickness in the evolution of continental rifts and oceanic islands. J Afr Earth Sc 3:261–268

    Google Scholar 

  • Harris C (1995) Oxygen isotope geochemistry of the Mesozoic anorogenic complexes of Damaraland, northwest Namibia: evidence for crustal contamination and its effect on silica saturation. Contrib Miner Petrol 122:308–321

    Google Scholar 

  • Harris C, Ashwal LD (2002) The origin of low δ18O granites and related rocks from the Seychelles. Contrib Mineral Petrol 143:366–376

    Google Scholar 

  • Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the Peninsula Granite, Cape Granite Suite, South Africa: Constraints on melting and emplacement mechanisms. S Afr J Geol 113:401–412

    Google Scholar 

  • Harris C, Marsh JS, Milner SC (1999) Petrology of the alkaline core of the Messum igneous complex, Namibia: evidence for the progressively decreasing effect of crustal contamination. J Petrol 40:1377–1397

    Google Scholar 

  • Harris C, Dreyer T, le Roux P (2018) Petrogenesis of peralkaline granite dykes of theStraumsvola complex, western Dronning Maud Land. Antarctica Contrib Mineral Petrol 173:8

    Google Scholar 

  • Hoeck V, Ionescu C, Balintoni I, Koller F (2009) The Eastern Carpathians “ophiolites” (Romania): remnants of a Triassic ocean. Lithos 108:151–171

    Google Scholar 

  • Honour VC, Goodenough KM, Shaw RA, Gabudianue I, Hirtopanu P (2018) REE mineralisation within the Ditrău Alkaline Complex, Romania: Interplay of magmatic and hydrothermal processes. Lithos 314–315:360–381

    Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357

    Google Scholar 

  • Jackson MG, Dasgupta R (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276:175–186

    Google Scholar 

  • Jakab G (1982) Studiul mineralogic şi geochimic al mineralizaţiilor metalifere dintre Voşlobeni şi Corbu. PhD dissertation, Universitate Alexandru. Ioan Cuza, Iaşi

  • Jakab G (1998) Geologia Masivului alcalin de la Ditrău. Pallas-Akad., M.-Ciuc., 298

  • Kempton PD, Downes H, Embey-Isztin A (1997) Mafic granulite xenoliths in Neogene alkali basalts from the western Pannonian Basin: insights into the lower crust of a collapsed orogen. J Petrol 38:941–970

    Google Scholar 

  • Kovács G, Pál-Molnár E (2005) A Ditrói alkáli masszívum granitoid kőzeteinek petrogenezise [Petrogenesis of granitoid rocks from the Ditrău Alkaline Massif—in Hungarian]. Földtani Közlöny 135:121–143

    Google Scholar 

  • Kozur H (1991) The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaeogeogr Palaeoclimatol Palaeoecol 87:109–135

    Google Scholar 

  • Kramm U, Kogarko LN (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Province, Russia. Lithos 32:225–242

    Google Scholar 

  • Kräutner HG, Bindea G (1995) The Ditrău alkaline intrusive complex and its geological environment. Romanian J Mineral 77:1–44

    Google Scholar 

  • Kräutner HG, Bindea G. (1998) Timing of the Ditrău alkaline intrusive complex (Eastern Carpathians, Romania). Slovak Geological Magazine:213–221

  • Lackey JS, Valley JW, Hinke HJ (2006) Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing plutons of the Sierra Nevada batholith. Contrib Miner Petrol 151:20–44

    Google Scholar 

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada Batholith: the oxygen isotope record. J Petrol 49:1397–1426

    Google Scholar 

  • Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Loiselle MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Abstracts Annual Meetings of the Geological Society of America and Associated Societies, San Diego, California, 5–8, 468

  • Ludwig KR (2003) Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology. Center Special Publication, pp 71

  • Martin RF (2006) A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91:125–136

    Google Scholar 

  • Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128(3–4):231–241

    Google Scholar 

  • Míková J, Denková P (2007) Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci 52:221–226

    Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Google Scholar 

  • Morogan V, Upton BGJ, Fitton JG (2000) The petrology of the Ditrău alkaline complex, Eastern Carpathians. Mineral Petrol 69:227–265

    Google Scholar 

  • Neumann ER (1980) Petrogenesis of the Oslo Region larvikites and associated rocks. J Petrol 21:499–531

    Google Scholar 

  • Pál-Molnár E (1992) Petrographical characteristics of Ditró (Orotva) hornblendites, Eastern Charpatians, Transylvania (Romania): a preliminary description. Acta Mineral-Pertrogr 33:67–80

    Google Scholar 

  • Pál-Molnár E (2000) Hornblendites and diorites of the Ditrău Syenite Massif. Ed. Dept. Of Mineralogy, Geochemistry and Petrology, University of Szeged, Szeged, 172

  • Pál-Molnár E, Árva-Sós E (1995) K/Ar radiometric dating on rocks from the northern part of the Ditrău Syenite Massif and its petrogenetic implications. Acta Mineral-Pertrogr Szeged 36:101–116

    Google Scholar 

  • Pál-Molnár E, Batki A, Almási E, Kiss B, Upton BGJ, Markl G, Odling N, Harangi S (2015a) Origin of mafic and ultramafic cumulates from the Ditrău Alkaline Massif, Romania. Lithos 239:1–18

    Google Scholar 

  • Pál-Molnár E, Batki A, Ódri Á, Kiss B, Almási E (2015b) Geochemical implications of the magmatic origin of granitic rocks from the Ditrău Alkaline Massif (Eastern Carpathians, Romania). Geol Croatica 68:51–66

    Google Scholar 

  • Pană D, Balintoni I, Heaman L (2000) Precise U-Pb zircon dating of the syenite phase from Ditrău Alkaline Igneous Complex. Studia Univ Babeş-Bolyai Geol 45:79–89

    Google Scholar 

  • Patiño Douce AE (1997) Generation of metaluminous A-type granitoids by low-pressure melting of calc-alkaline granitoids. Geology 25:743–746

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Pin C, Briot D, Bassin C, Poitrasson F (1994) Concominant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217

    Google Scholar 

  • Poitrasson F, Duthou JL, Pin C (1995) The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: example of the Corsican Province (SE France). J Petrol 36:1251–1274

    Google Scholar 

  • Popescu G (1985) Rb-Sr geochronological data on rocks of the Ditrău Massif (in Romanian, manuscript). Arch. GEOLEX Harghita (Miercurea Ciuc)

  • Salvi S, Williams-Jones AE (2005) Alkaline granite-syenite deposits. In: Linnen RL, Samson IM (eds) Rare-element geochemistry and mineral deposits. Geological Association of Canada, Short Course Notes 17: 315–341

  • Săndulescu M (1984) Geotectonica Romăniei. Editura Technică, 336

  • Săndulescu M, Kräutner HG, Balintoni I, Russo-Săndulescu M, Micu M (1981) The Structure of the East Carpathians (Moldavia - Maramures Area) Guide Exc. B1, Carp.-Balk. Geol. Assoc., XII Congr. Inst. Geol. Geophys, pp 92, Bucuresti

  • Sheppard SMF, Harris C (1985) Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water. Contrib Miner Petrol 91:74–81

    Google Scholar 

  • Skjerlie KP, Johnston AD (1992) Vapor-absent melting at 10 kbar of a biotite- and amphibolebearing tonalitic gneiss: implications for the generation of A-type granites. Geology 20:263–266

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 26:207–221

    Google Scholar 

  • Streckeisen A, Hunziker IC (1974) On the origin of the Nephelinesyenite Massif of Ditró (Transylvania, Romania). Schweiz Min Petr Mitt 54:59–77

    Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc, London, Special Publ 42:313–345

    Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281

    Google Scholar 

  • Tanimizu M, Ishikawa T (2006) Development of rapid and precise Pb isotope analytical techniques using MC-ICP-MS and new results for GSJ rock reference samples. Geochem J 40:121–133

    Google Scholar 

  • Tašárová A, Afonso JC, Bielik M, Götze HJ, Hók J (2009) The lithospheric structure of the Western Carpathian-Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modelling. Tectonophysics 475:454–469

    Google Scholar 

  • Taylor HP Jr (1977) Water/rock interactions and the origin of H2O in granitic batholiths. J Geol Soc, London 133:509–558

    Google Scholar 

  • Tuttle O, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8– KAlSi3O8–SiO2–H2O. Geol Soc Am 74:1–146

    Google Scholar 

  • Upton BGJ, Emeleus CH, Heaman LM, Goodenough KM, Finch A (2003) Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68:43–65

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. In: J.M. Hanchar, P.W.O. Hoskin (eds.), Zircon. Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry 53:343–385

  • Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206

    Google Scholar 

  • Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Miner Petrol 133:1–11

    Google Scholar 

  • Vaselli O, Downes H, Thirlwall M, Dobosi G, Coradossi N, Seghedi I, Szakacs A, Vannucci R (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the Eastern Transylvanian Basin: depleted mantle enriched by vein metasomatism. J Petrol 36:23–53

    Google Scholar 

  • Waight T, Baker J, Peate D (2002) Sr isotope ratio measurements by double-focusing MC-ICPMS: techniques, observations and pitfalls. Int J Mass Spectrom 221:229–244

    Google Scholar 

  • Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth PlanetarySci Lett 148:527–544

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Weis D, Kieffer B, Maerschalk C, Barling J, de Jong J, Williams GA, Hanano D, Pretorius W, Mattielli N, Scoates JS, Goolaerts A, Friedman RM, Mahoney JB (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MCICP-MS. Geochem Geophys Geosyst 7:Q08006

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95(4):407–419

    Google Scholar 

  • White W (2010) Oceanic island basalts and mantle plumes: the geochemical perspective. Annu Rev Earth Planet Sci 38:133–160

    Google Scholar 

  • Wilson M, Downes H, Cebria JM (1995) Contrasting fractionation trends in coexisting continental alkaline magma series; Cantal, Massif Central, France. J Petrol 36:1729–1753

    Google Scholar 

  • Wolff JA (2017) On the syenite-trachyte problem. Geology 45:1067–1070

    Google Scholar 

  • Zhao Z, Di-Cheng Z, Dong L, Xuanxue M (2016) In situ SIMS oxygen isotope analysis of olivine in the Tibetan mantle xenoliths. EGU General Assembly 2016 held 17–22 April, 2016 in Vienna Austria, id. EPSC2016–10960

Download references

Acknowledgements

The isotope analyses were funded by the Ministry of Human Resources of the Government of Hungary through the National Scholarship of Young Talents grant. Additional funding was provided by UCT in the form of a PhD fellowship to ÁÓ, and the NRF as incentive funding to CH is gratefully acknowledged. We thank Fayrooza Rawoot, Sherissa Roopnarain, Kerryn Gray, Phil Janney, Christel Tinguely and Jonathan van Rooyen for help with the analytical work. We also thank Dr. Elemér Pál-Molnár from the Volcano Research Group (University of Szeged, Hungary) for providing samples and some whole-rock data, Dr. Ildikó Soós and Dr. Réka Lukács from MTA-ELTE Volcanology Research Group (Hungary) for their help with zircon separation. Stefan Jung, Michael Marks and Greg Shellnut are thanked for their constructive comments on the PhD thesis of the first author. We thank Othmar Müntener and two anonymous reviewers for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Harris.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 174 kb)

Supplementary file2 (XLSX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ódri, Á., Harris, C. & Le Roux, P. The role of crustal contamination in the petrogenesis of nepheline syenite to granite magmas in the Ditrău Complex, Romania: evidence from O-, Nd-, Sr- and Pb-isotopes. Contrib Mineral Petrol 175, 100 (2020). https://doi.org/10.1007/s00410-020-01738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01738-5

Keywords

Navigation