Skip to main content

Thermodynamic modeling of high-grade metabasites: a case study using the Tso Morari UHP eclogite

Abstract

Thermodynamic modeling is an important technique to simulate the evolution of metamorphic rocks, particularly the poorly preserved prograde metamorphic reactions. The development of new thermodynamic modeling techniques and availability of updated thermodynamic databases and activity–composition (a–X) relations, call for an evaluation of best practices for modeling pressure–temperature (P–T) paths of metabasites. In this paper, eclogite from the Tso Morari UHP terrane, NW India, is used as a representative metabasite to directly compare the outputs (pseudosections and P–T paths) generated from recent versions of the widely used THERMOCALC and Theriak-Domino programs. We also evaluate the impact of using the most updated thermodynamic database (ds 62, Holland and Powell in J Metamorph Geol 29(3):333–383, 10.1111/j.1525-1314.2010.00923.x, 2011) relative to an older version (ds 55, Holland and Powell in J Metamorph Geol 16(3):309–343, 10.1111/j.1525-1314.1998.00140.x, 1998), and the effect of the user’s choice of mineral a–X relations while considering the effect of garnet fractionation on the rock’s effective bulk composition. The following modeling protocols were assessed: (1) TC33; THERMOCALC version 3.33 with database ds 55 and garnet a–X relations of White et al. (J Metamorph Geol 25(5):511–527, 10.1111/j.1525-1314.2007.00711.x, 2007); (2) TC47; THERMOCALC version 3.47 with database ds 62 and garnet a–X relations of White et al. (J Metamorph Geol 32(3):261–286, 10.1111/jmg.12071, 2014a); (3) TDG; Theriak-Domino with database ds 62 and garnet a–X relations of White et al. (2014a), and (4) TDW; Theriak-Domino with database ds 62 and garnet a–X relations of White et al. (2007). TC47 and TDG modeling yield a similar peak metamorphic P–T of 34 ± 1.5 kbar at 544 ± 15 °C and 551 ± 12 °C, respectively. The results are 5–8 kbar higher in pressure than that determined from TC33 modeling (26 ± 1 kbar at 565 ± 8 °C), and TDW modeling (28.5 ± 1.5 kbar at 563 ± 13 °C). Results indicate that all four modeling protocols generally provide consistent metamorphic phase relations and thermodynamic simulations regarding fractionation of the bulk composition and prograde metamorphism within uncertainty. In all model calculations, the initial bulk composition measured by XRF does not represent the effective bulk composition at the time of garnet nucleation. The choice of garnet a–X relations can affect predictions of peak pressure, regardless of program choice. This study illustrates the importance of careful consideration of which a–X relations one chooses, as well as the need for comparison between modeling predictions and evidence from the geochemistry and petrography of the rock(s) themselves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Ague JJ, Axler JA (2016) Interface coupled dissolution-reprecipitation in garnet from subducted granulites and ultrahigh-pressure rocks revealed by phosphorous, sodium, and titanium zonation. Am Mineral 101:1696–1699. https://doi.org/10.2138/am-2016-5707

    Article  Google Scholar 

  2. Baxter E, Caddick M, Dragovic B (2017) Garnet: a rock-forming mineral petrochronometer. Rev Mineral Geochem 83(1):469–533. https://doi.org/10.2138/rmg.2017.83.15

    Article  Google Scholar 

  3. Beaumont C, Jamieson RA, Butler JP, Warren CJ (2009) Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett 287(1–2):116–129. https://doi.org/10.1016/j.epsl.2009.08.001

    Article  Google Scholar 

  4. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29(2):445–522. https://doi.org/10.1093/petrology/29.2.445

    Article  Google Scholar 

  5. Berman RG (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. Amer Miner 75:328–344

    Google Scholar 

  6. Berthelsen A (1953) On the geology of the Rupshu District, NW Himalaya: a contribution to the problem of the Central Gneisses. Medd fra Dansk Geol Forening Kobenkhavn 12:350–415

    Google Scholar 

  7. Brown M (2014) The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci Front 5(4):553–569. https://doi.org/10.1016/j.gsf.2014.02.005

    Article  Google Scholar 

  8. Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks. Springer Science and Business Media, New York, pp 21–56

    Book  Google Scholar 

  9. Caddick MJ, Konopásek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51(11):2327–2347. https://doi.org/10.1093/petrology/egq059

    Article  Google Scholar 

  10. Carlson WD, Pattison DRM, Caddick MJ (2015) Beyond the equilibrium paradigm: How consideration of kinetics enhances metamorphic interpretation. Am Miner 100(8–9):1659–1667. https://doi.org/10.2138/am-2015-5097

    Article  Google Scholar 

  11. Carswell DA, Harley SL (1990) Mineral baromety and thermometry. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow, pp 83–110

    Chapter  Google Scholar 

  12. Carswell DA, Wilson RN, Zhai MG (2000) Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China. Lithos 52(1–4):121–155. https://doi.org/10.1016/S0024-4937(99)00088-2

    Article  Google Scholar 

  13. Chatterjee N, Jagoutz O (2015) Exhumation of the UHP Tso Morari eclogite as a diapir rising through the mantle wedge. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-014-1099-y

    Article  Google Scholar 

  14. Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20(7):683–696. https://doi.org/10.1046/j.1525-1314.2002.00395.x

    Article  Google Scholar 

  15. Dale J, Holland T, Powell R (2000) Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib Mineral Petrol 140(3):353–362. https://doi.org/10.1007/s004100000187

    Article  Google Scholar 

  16. Dale J, Powell R, White L, Elmer FL, Holland TJB (2005) A thermodynamic model for Ca-Na-amphiboles in Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O for prtrological calculations. J Metamorph Geol 23:771–791. https://doi.org/10.1111/j.1525-1314.2005.00609.x

    Article  Google Scholar 

  17. De Andrade V, Vidal O, Lewin E, O’brien P, Agard P (2006) Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples. J Metamorph Geol 24(7):655–668. https://doi.org/10.1111/j.1525-1314.2006.00660.x

    Article  Google Scholar 

  18. de Capitani C (1994) Gleichgewichts-Phasendiagramme: Theorie und Software. Beihefte zum Eur J Mineral 72:48

    Google Scholar 

  19. de Sigoyer J, Guillot S, Lardeaux JM, Mascle G (1997) Glaucophane-bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya). Eur J Mineral 9(5):1073–1084. https://doi.org/10.1127/ejm/9/5/1073

    Article  Google Scholar 

  20. de Sigoyer J, Chavagnac V, Baldwin J, Luais B, Blichert-Toft J, Villa I, Guillot S (1999) Timing of the Hp-Lt Tso Morari evolution: from continental subduction to collision in the NW Himalaya. Terra Nostra 99:141–142

    Google Scholar 

  21. de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology 28(6):487–490. https://doi.org/10.1130/0091-7613(2000)28%3C487:DTICSA%3E2.0.CO;2

    Article  Google Scholar 

  22. de Sigoyer J, Guillot S, Dick P (2004) Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): a case study. Tectonics. https://doi.org/10.1029/2002TC001492

    Article  Google Scholar 

  23. Diener JFA, Powell R (2012) Revised activity-composition models for clinopyroxene and amphibole. J Metamorph Geol 30(2):131–142. https://doi.org/10.1111/j.1525-1314.2011.00959.x

    Article  Google Scholar 

  24. Diener JFA, Powell R, White RW, Holland TJB (2007) A new thermodynamic model for clino-and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol 25(6):631–656. https://doi.org/10.1111/j.1525-1314.2007.00720.x

    Article  Google Scholar 

  25. Donaldson DG, Webb AAG, Menold CA, Kylander-Clark AR, Hacker BR (2013) Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology 41(8):835–838. https://doi.org/10.1130/G33699.1

    Article  Google Scholar 

  26. Droop G (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51(361):431–435. https://doi.org/10.1180/minmag.1987.051.361.10

    Article  Google Scholar 

  27. Endo S, Wallis SR, Tsuboi M, Aoya M, Uehara SI (2012) Slow subduction and buoyant exhumation of the Sanbagawa eclogite. Lithos 146:183–201. https://doi.org/10.1016/j.lithos.2012.05.010

    Article  Google Scholar 

  28. Engi M (1992) Thermodynamic data for minerals: a critical assessment. The stability of minerals. Springer, Dordrecht, pp 267–328

    Google Scholar 

  29. Evans T (2004) A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: implications for isopleth thermobarometry. J Metamorph Geol 22(6):547–557. https://doi.org/10.1111/j.1525-1314.2004.00532.x

    Article  Google Scholar 

  30. Florence FP, Spear FS (1995) Intergranular diffusion kinetics of Fe and Mg during retrograde metamorphism of a pelitic gneiss from the Adirondack Mountains. Earth Planet Sci Lett 134(3–4):329–340. https://doi.org/10.1016/0012-821X(95)00129-Z

    Article  Google Scholar 

  31. Gaidies F, de Capitani C, Abart R (2008a) THERIA_G: a software program to numerically model prograde garnet growth. Contrib Mineral Petrol 155(5):657–671. https://doi.org/10.1007/s00410-007-0263-z

    Article  Google Scholar 

  32. Gaidies F, de Capitani C, Abart R, Schuster R (2008b) Prograde garnet growth along complex P-T-t paths: results from numerical experiments on polyphase garnet from the Wölz Complex (Austroalpine basement). Contrib Mineral Petrol 155(6):673–688. https://doi.org/10.1007/s00410-007-0264-y

    Article  Google Scholar 

  33. Green TH, Hellman PL (1982) Fe-Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos 15(4):253–266. https://doi.org/10.1016/0024-4937(82)90017-2

    Article  Google Scholar 

  34. Green E, Holland T, Powell R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. Am Miner 92(7):1181–1189. https://doi.org/10.2138/am.2007.2401

    Article  Google Scholar 

  35. Green ECR, Holland TJB, Powell R (2012) A thermodynamic model for silicate melt in CaO-MgO-Al2O3-SiO2 to 50 kbar and 1800 °C. J Metamorph Geol 30(6):579–597. https://doi.org/10.1111/j.1525-1314.2012.00982.x

    Article  Google Scholar 

  36. Green ECR, White RW, Diener JFA, Powell R, Holland TJB, Palin RM (2016) Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol 34(9):845–869. https://doi.org/10.1111/jmg.12211

    Article  Google Scholar 

  37. Guidotti CV, Sassi FP, Blencoe JG, Selverstone J (1994) The paragonite-muscovite solvus: I. PTX limits derived from the Na-K compositions of natural, quasibinary paragonite-muscovite pairs. Geochim Cosmochim Acta 58(10):2269–2275. https://doi.org/10.1016/0016-7037(94)90009-4

    Article  Google Scholar 

  38. Guillot S, de Sigoyer J, Lardeaux J, Mascle G (1997) Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): Evidence for continental subduction during India-Asia convergence. Contrib Mineral Petrol 128(2–3):197–212. https://doi.org/10.1007/s004100050303

    Article  Google Scholar 

  39. Guillot S, Hattori KH, de Sigoyer J (2000) Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya. Geology 28:199–202. https://doi.org/10.1130/0091-7613(2000)28%3C199:MWSAEO%3E2.0.CO;2

    Article  Google Scholar 

  40. Guillot S, Mahéo G, de Sigoyer J, Hattori KH, Pecher A (2008) Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics 451(1–4):225–241. https://doi.org/10.1016/j.tecto.2007.11.059

    Article  Google Scholar 

  41. Hacker BR (2006) Pressures and temperatures of ultrahigh-pressure metamorphism: implications for UHP tectonics and H2O in subducting slabs. Int Geol Rev 48(12):1053–1066. https://doi.org/10.2747/0020-6814.48.12.1053

    Article  Google Scholar 

  42. Helgeson HC, Delaney JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278A:1–229

    Google Scholar 

  43. Hernández-Uribe D, Mattinson CG, Zhang J (2018) Phase equilibrium modelling and implications for P-T determinations of medium-temperature UHP eclogites, North Qaidam terrane, China. J Metamorph Geol 36(9):1237–1261. https://doi.org/10.1111/jmg.12444

    Article  Google Scholar 

  44. Hernández-Uribe D, Gutiérrez-Aguilar F, Mattinson CG, Palin RM, Neill OK (2019) A new record of deeper and colder subduction in the Acatlán complex, Mexico: evidence from phase equilibrium modelling and Zr-in-rutile thermometry. Lithos 324:551–568. https://doi.org/10.1016/j.lithos.2018.10.003

    Article  Google Scholar 

  45. Holland TJ (1990) Activities of components in omphacitic solid solutions. Contrib Mineral Petrol 105(4):446–453. https://doi.org/10.1007/BF00286831

    Article  Google Scholar 

  46. Holland T, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. J Metamorph Geol 8(1):89–124. https://doi.org/10.1111/j.1525-1314.1990.tb00458.x

    Article  Google Scholar 

  47. Holland T, Powell R (1996) Thermodynamics of order-disorder in minerals; II, Symmetric formalism applied to solid solutions. Am Miner 81(11–12):1425–1437. https://doi.org/10.2138/am-1996-11-1215

    Article  Google Scholar 

  48. Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x

    Article  Google Scholar 

  49. Holland T, Powell R (2000) AX: a program to calculate activities of mineral end members from chemical analyses (usually determined by electron microprobe). https://www.esc.cam.ac.uklastafflhollandlax.html

  50. Holland T, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145(4):492–501. https://doi.org/10.1007/s00410-003-0464-z

    Article  Google Scholar 

  51. Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29(3):333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

    Article  Google Scholar 

  52. Horák J, Gibbons W (1986) Reclassification of blueschist amphiboles from Anglesey, North Wales. Mineral Mag 50(357):533–535. https://doi.org/10.1180/minmag.1986.050.357.18

    Article  Google Scholar 

  53. Imayama T (2014) P-T conditions of metabasites within regional metapelites in far-eastern Nepal Himalaya and its tectonic meaning. Swiss J Geosci 107(1):81–99. https://doi.org/10.1007/s00015-014-0159-7

    Article  Google Scholar 

  54. Jonnalagadda MK, Karmalkar NR, Duraiswami RA (2017a) Geochemistry of eclogites of the Tso Morari complex, Ladakh, NW Himalayas: insights into trace element behavior during subduction and exhumation. Geosci Front 10(3):811–826. https://doi.org/10.1016/j.gsf.2017.05.013

    Article  Google Scholar 

  55. Jonnalagadda MK, Karmalkar NR, Duraiswami RA, Harshe S, Gain S, Griffin WL (2017b) Formation of atoll garnets in the UHP eclogites of the Tso Morari Complex, Ladakh, Himalaya. J Earth Syst Sci 126(8):107. https://doi.org/10.1007/s12040-017-0887-y

    Article  Google Scholar 

  56. Kamzolkin VA, Ivanov SD, Konilov AN (2016) Empirical phengite geobarometer: Background, calibration, and application. Geol Ore Depos 58(8):613–622. https://doi.org/10.1134/S1075701516080092

    Article  Google Scholar 

  57. Kelsey DE, Hand M (2015) On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front 6(3):311–356. https://doi.org/10.1016/j.gsf.2014.09.006

    Article  Google Scholar 

  58. Kohn MJ, Parkinson CD (2002) Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 30(7):591–594. https://doi.org/10.1130/0091-7613(2002)030%3C0591:PCFESB%3E2.0.CO;2

    Article  Google Scholar 

  59. Kohn MJ, Spear FS (1991) Error propagation for barometers; 2 Application to rocks. Am Miner 76(1–2):138–147

    Google Scholar 

  60. Konrad-Schmolke M, Handy MR, Babist J, O’Brien PJ (2005) Thermodynamic modelling of diffusion-controlled garnet growth. Contrib Mineral Petrol 149(2):181–195. https://doi.org/10.1007/s00410-004-0643-6

    Article  Google Scholar 

  61. Konrad-Schmolke M, O'Brien PJ, de Capitani C, Carswell DA (2008) Garnet growth at high-and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos 103(3–4):309–332. https://doi.org/10.1016/j.lithos.2007.10.007

    Article  Google Scholar 

  62. Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68(1–2):277–279

    Google Scholar 

  63. Kylander-Clark AR, Hacker BR, Mattinson CG (2012) Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett 321:115–120. https://doi.org/10.1016/j.epsl.2011.12.036

    Article  Google Scholar 

  64. Lanari P, Duesterhoeft E (2019) Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: past achievements, problems and perspectives. J Petrol 60(1):19–56. https://doi.org/10.1093/petrology/egy105

    Article  Google Scholar 

  65. Lanari P, Engi M (2017) Local bulk composition effects on metamorphic mineral assemblages. Rev Mineral Geochem 83(1):55–102. https://doi.org/10.2138/rmg.2017.83.3

    Article  Google Scholar 

  66. Lanari P, Riel N, Guillot S, Vidal O, Schwartz S, Pêcher A, Hattori KH (2013) Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: application to the Stak eclogitic massif (northwest Himalaya). Geology 41(2):111–114. https://doi.org/10.1130/G33523.1

    Article  Google Scholar 

  67. Lanari P, Giuntoli F, Loury C, Burn M, Engi M (2017) An inverse modeling approach to obtain P-T conditions of metamorphic stages involving garnet growth and resorption. Eur J Mineral 29:181–199. https://doi.org/10.1127/ejm/2017/0029-2597

    Article  Google Scholar 

  68. Lanari P, Vho A, Bovay T, Airaghi L, Centrella S (2019) Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geol Soc Lond Spec Publ 478(1):39–63. https://doi.org/10.1144/SP478.4

    Article  Google Scholar 

  69. Laurent V, Lanari P, Naïr I, Augier R, Lahfid A, Jolivet L (2018) Exhumation of eclogite and blueschist (Cyclades, Greece): pressure–temperature evolution determined by thermobarometry and garnet equilibrium modelling. J Metamorph Geol 36(6):769–798. https://doi.org/10.1111/jmg.12309

    Article  Google Scholar 

  70. Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM (2005) The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett 234:83–97. https://doi.org/10.1016/j.epsl.2005.02.038

    Article  Google Scholar 

  71. Leech ML, Singh S, Jain AK (2007) Continuous metamorphic zircon growth and interpretation of U-Pb SHRIMP dating: An example from the Western Himalaya. Int Geol Rev 49(4):313–328. https://doi.org/10.2747/0020-6814.49.4.313

    Article  Google Scholar 

  72. Liou J (1998) High-pressure minerals from deeply subducted metamorphic rocks. In: Ultrahigh-pressure mineralogy, pp 33–96

  73. Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11. https://doi.org/10.1016/j.cageo.2013.09.011

    Article  Google Scholar 

  74. Lombardo B, Rolfo F (2000) Two contrasting eclogite types in the Himalayas: implications for the Himalayan orogeny. J Geodyn 30(1–2):37–60. https://doi.org/10.1016/S0264-3707(99)00026-5

    Article  Google Scholar 

  75. Lombardo B, Rolfo F, Compagnoni R (2000) Glaucophane and barroisite eclogites from the Upper Kaghan nappe: implications for the metamorphic history of the NW Himalaya. Geol Soc Lond Spec Publ 170(1):411–430. https://doi.org/10.1144/GSL.SP.2000.170.01.22

    Article  Google Scholar 

  76. Mahar EM, Baker JM, Powell R, Holland TJB, Howell N (1997) The effect of Mn on mineral stability in metapelites. J Metamorph Geol 15(2):223–238. https://doi.org/10.1111/j.1525-1314.1997.00011.x

    Article  Google Scholar 

  77. Marmo B, Clarke G, Powell R (2002) Fractionation of bulk rock composition due to porphyroblast growth: effects on eclogite facies mineral equilibria, Pam Peninsula, New Caledonia. J Metamorph Geol 20(1):151–165. https://doi.org/10.1046/j.0263-4929.2001.00346.x

    Article  Google Scholar 

  78. Massonne HJ (2012) Formation of amphibole and clinozoisite-epidote in eclogite owing to fluid infiltration during exhumation in a subduction channel. J Petrol 53(10):1969–1998. https://doi.org/10.1093/petrology/egs040

    Article  Google Scholar 

  79. Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96(2):212–224. https://doi.org/10.1007/BF00375235

    Article  Google Scholar 

  80. Menold CA, Manning CE, Yin A, Tropper P, Chen XH, Wang XF (2009) Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahigh-pressure eclogites in the North Qaidam metamorphic belt, Western China. J Asian Earth Sci 35(3–4):273–284. https://doi.org/10.1016/j.jseaes.2008.12.008

    Article  Google Scholar 

  81. Meyre C, de Capitani C, Partzsch JH (1997) A ternary solid solution model for omphacite and its application to geothermobarometry of eclogites from the middle Adula Nappe (Central Alps, Switzerland). J Metamorph Geol 15:687–700. https://doi.org/10.1111/j.1525-1314.1997.00042.x

    Article  Google Scholar 

  82. Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39(1):55–76. https://doi.org/10.1007/BF01226262

    Article  Google Scholar 

  83. Moynihan DP, Pattison DRM (2013) An automated method for the calculation of P-Tpaths from garnet zoning, with application to metapelitic schist from the Kootenay Arc, British Columbia, Canada. J Metamorph Geol 31(5):525–548. https://doi.org/10.1111/jmg.12032

    Article  Google Scholar 

  84. Mukherjee BK, Sachan HK (2001) Discovery of coesite from Indian Himalaya: a record of ultra-high pressure metamorphism in Indian continental crust. Curr Sci 1358–1361.

  85. Mukherjee BK, Sachan HK (2004) Garnet response diamond pressure metamorphism from Tso Morari region, Ladakh, India. Himal J Sci 2(4):209. https://doi.org/10.3126/hjs.v2i4.902

    Article  Google Scholar 

  86. Mukherjee BK, Sachan HK (2009) Fluids in coesite-bearing rocks of the Tso Morari Complex, NW Himalaya: evidence for entrapment during peak metamorphism and subsequent uplift. Geol Mag 146(06):876–889. https://doi.org/10.1017/S0016756809990069

    Article  Google Scholar 

  87. Mukherjee BK, Sachan HK, Ogasawara Y, Muko A, Yoshioka N (2003) Carbonate-bearing UHPM rocks from the Tso-Morari Region, Ladakh, India: petrological implications. Int Geol Rev 45(1):49–69. https://doi.org/10.2747/0020-6814.45.1.49

    Article  Google Scholar 

  88. Newton RC, Haselton HT (1981) Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of minerals and melts. Advances in physical geochemistry, vol 1. Springer, New York, pp 131–147. https://doi.org/10.1007/978-1-4612-5871-1_7

  89. O'Brien PJ (2018) Eclogites and other high-pressure rocks in the Himalaya: a review. Geol Soc Lond Spec Publ 483(1):183–213. https://doi.org/10.1144/SP483.13

    Article  Google Scholar 

  90. Obrien PJ (2019) Tso Morari coesite eclogite: pseudosection predictions v. the preserved record and implications for tectonometamorphic models. Geol Soc Lond Spec Publ 474(1):5–24. https://doi.org/10.1144/SP474.16

    Article  Google Scholar 

  91. O'Brien PJ, Sachan HK (2000) Diffusion modelling in garnet from Tso Morari eclogite and implications for exhumation models. Earth Sci Front 7(Suppl):25–27

    Google Scholar 

  92. O’Brien PJ, Zotov N, Law R, Khan MA, Jan MQ (1999) Coesite in eclogite from the upper Kaghan Valley, Pakistan: a first record and implications. Terra Nostra 99(2):109–111

    Google Scholar 

  93. O'Brien PJ, Zotov N, Law R, Khan MA, Jan MQ (2001) Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology 29(5):435–438. https://doi.org/10.1130/0091-7613(2001)029%3C0435:CIHEAI%3E2.0.CO;2

    Article  Google Scholar 

  94. Palin RM, St-Onge MR, Waters DJ, Searle MP, Dyck B (2014) Phase equilibria modelling of retrograde amphibole and clinozoisite in mafic eclogite from the Tso Morari massif, northwest India: constraining the P-T-M(H2O) conditions of exhumation. J Metamorph Geol 32(7):675–693. https://doi.org/10.1111/jmg.12085

    Article  Google Scholar 

  95. Palin RM, Weller OM, Waters DJ, Dyck B (2016) Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci Front 7(4):591–607. https://doi.org/10.1016/j.gsf.2015.08.005

    Article  Google Scholar 

  96. Palin RM, Reuber GS, White RW, Kaus BJP, Weller OM (2017) Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: an integrated geodynamic and petrological modelling approach. Earth Planet Sci Lett 467:108–119. https://doi.org/10.1016/j.epsl.2017.03.029

    Article  Google Scholar 

  97. Pattinson DRM (2003) Petrogenetic significance of orthopyroxene-free garnet plus clinopyroxene plus plagioclase+/− quartz-bearing metabasites with respect to the amphibolite and granulite facies. J Metamorph Geol 21(1):21–34. https://doi.org/10.1046/j.1525-1314.2003.00415.x

    Article  Google Scholar 

  98. Penniston-Dorland SC, Kohn MJ, Manning CE (2015) The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models. Earth Planet Sci Lett 428:243–254. https://doi.org/10.1016/j.epsl.2015.07.031

    Article  Google Scholar 

  99. Pognante U, Spencer DA (1991) First report of eclogites from the Himalayan belt, Kaghan valley (northern Pakistan). Eur J Mineral 3(3):613–618. https://doi.org/10.1127/ejm/3/3/0613

    Article  Google Scholar 

  100. Pognante U, Castelli D, Benna P, Genovese G, Oberli F, Meier M, Tonarini S (1990) The crystalline units of the High Himalayas in the Lahul-Zanskar region (northwest India): metamorphic-tectonic history and geochronology of the collided and imbricated Indian plate. Geol Mag 127(2):101–116. https://doi.org/10.1017/S0016756800013807

    Article  Google Scholar 

  101. Powell R (1985) Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. J Metamorph Geol 3(3):231–243. https://doi.org/10.1111/j.1525-1314.1985.tb00319.x

    Article  Google Scholar 

  102. Powell R, Holland T (1994) Optimal geothermometry and geobarometry. Am Miner 79(1–2):120–133

    Google Scholar 

  103. Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26(2):155–179. https://doi.org/10.1111/j.1525-1314.2007.00756.x

    Article  Google Scholar 

  104. Powell R, Holland T, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16(4):577–588. https://doi.org/10.1111/j.1525-1314.1998.00157.x

    Article  Google Scholar 

  105. Proyer A, Dachs E, McCammon C (2004) Pitfalls in geothermobarometry of eclogites: Fe3+ and changes in the mineral chemistry of omphacite at ultrahigh pressures. Contrib Mineral Petrol 147(3):305–318. https://doi.org/10.1007/s00410-004-0554-6

    Article  Google Scholar 

  106. Ravna K (2000) The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. J Metamorph Geol 18(2):211–219. https://doi.org/10.1046/j.1525-1314.2000.00247.x

    Article  Google Scholar 

  107. Ravna EK, Paquin J (2003) Thermobarometric methodologies applicable to eclogites and garnet ultrabasites. EMU Notes Mineral 5(8):229–259. https://doi.org/10.1180/EMU-notes.5.8

    Article  Google Scholar 

  108. Rehman HU, Yamamoto H, Kaneko Y, Kausar AB, Murata M, Ozowa H (2007) Thermobaric structure of the Himalayan metamorphic belt in Kaghan Valley, Pakistan. J Asian Earth Sci 29(2–3):390–406. https://doi.org/10.1016/j.jseaes.2006.06.002

    Article  Google Scholar 

  109. Rehman HU, Yamamoto H, Khalil MAK, Nakamura E, Zafar M, Khan T (2008) Metamorphic hiostory and tectonic evolution of the Himalayan UHP eclogites in Kaghan valley, Pakistan. J Miner Petrol Sci 103(4):242–254. https://doi.org/10.2465/jmps.080222

    Article  Google Scholar 

  110. Roux J, Hovis GL (1996) Thermodynamic mixing models for muscovite-paragonite solutions based on solution calorimetric and phase equilibrium data. J Petrol 37(5):1241–1254. https://doi.org/10.1093/petrology/37.5.1241

    Article  Google Scholar 

  111. Sachan HK, Bodnar RJ, Islam R, Szabo CS, Law RD (1999) Exhumation history of eclogites from the Tso Morari crystalline complex in eastern Ladakh: mineralogical and fluid inclusion constraints. J Geol Soc India 53(2):181–190. https://www.geosocindia.org/index.php/jgsi/article/view/68998

  112. Sachan HK, Mukherjee BK, Ogasawara Y, Maruyama S, Ishida H, Muko A, Yoshioka N (2004) Discovery of coesite from Indus Suture Zone (ISZ), Ladakh, India: evidence for deep subduction. Eur J Mineral 16(2):235–240. https://doi.org/10.1127/0935-1221/2004/0016-0235

    Article  Google Scholar 

  113. Schmidt M (1993) Phase relations and compositions in tonalite as a function of pressure: an experimental study at 650 °C. Am J Sci 293:1011–1060

    Article  Google Scholar 

  114. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  115. Schreyer W (1995) Ultradeep metamorphic rocks: the retrospective viewpoint. J Geophys Res Solid Earth 100(B5):8353–8366. https://doi.org/10.1029/94JB02912

    Article  Google Scholar 

  116. Singh P, Saikia A, Pant NC, Verma PK (2013a) Insights into the P-T evolution path of Tso Morari eclogites of the north-western Himalayas: constraints on the geodynamic evolution of the region. J Earth Syst Sci 122(3):677–698. https://doi.org/10.1007/s12040-013-0307-x

    Article  Google Scholar 

  117. Singh P, Pant NC, Saikia A, Kundu A (2013b) The role of amphiboles in the metamorphic evolution of the UHP rocks: a case study from the Tso Morari Complex, northwest Himalayas. Int J Earth Sci 102(8):2137–2152. https://doi.org/10.1007/s00531-013-0920-6

    Article  Google Scholar 

  118. Spear FS (1988) Metamorphic fractional crystallization and internal metasomatism by diffusional homogenization of zoned garnets. Contrib Mineral Petrol 99(4):507–517. https://doi.org/10.1007/BF00371941

    Article  Google Scholar 

  119. Spear FS (1995) Metamorphic phase equilibria and pressure-temperature-time paths (2nd print., corr). Mineralogical Society of America, Washington, D.C.

  120. Spear FS, Selverstone J (1983) Quantitative PT paths from zoned minerals: theory and tectonic applications. Contrib Mineral Petrol 83(3–4):348–357. https://doi.org/10.1007/BF00371203

    Article  Google Scholar 

  121. Spear FS, Wolfe OM (2018) Evaluation of the effective bulk composition (EBC) during growth of garnet. Chem Geol 491:39–47. https://doi.org/10.1016/j.chemgeo.2018.05.019

    Article  Google Scholar 

  122. Spear FS, Kohn M, Florence F, Menard T (1990) A model for garnet and plagioclase growth in pelitic schists: implications for thermobarometry and P-T path determinations. J Metamorph Geo l8(6):683–696. https://doi.org/10.1111/j.1525-1314.1990.tb00495.x

  123. Spencer DA (1993) Tectonics of the Higher-and Tethyan Himalaya, Upper Kaghan Valley, NW Himalaya, Pakistan: implications of an early collisional, high pressure (eclogite facies) metamorphism to the Himalayan belt (Doctoral dissertation, ETH Zurich). https://doi.org/10.3929/ethz-a-000924618

  124. Spencer DA, Tonarini S, Pognante U (1995) Geochemical and Sr–Nd isotopic characterisation of Higher Himalayan eclogites (and associated metabasites). Eur J Mineral 7(1):89–102. https://doi.org/10.1127/ejm/7/1/0089

    Article  Google Scholar 

  125. Steck A (2003) Geology of the NW Indian Himalaya. Eclogae Geol Helv 96:147–196

    Google Scholar 

  126. Steck A, MatthieuGirard AM, Robyr M (1998) Geological transect across the Tso Morari and Spiti areas: the nappe structures of the Tethys Himalaya

  127. St-Onge MR, Rayner N, Palin RM, Searle MP, Waters DJ (2013) Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): implications for the burial and exhumation path of UHP units in the western Himalaya. J Metamorph Geol 31(5):469–504. https://doi.org/10.1111/jmg.12030

    Article  Google Scholar 

  128. Stowell HH, Tinkham DK (2003) Integration of phase equilibria modelling and garnet Sm-Nd chronology for construction of PTt paths: examples from the Cordilleran Coast Plutonic Complex, USA. Geol Soc Lond Spec Publ 220(1):119–145. https://doi.org/10.1144/GSL.SP.2003.220.01.07

    Article  Google Scholar 

  129. Symmes GH, Ferry JM (1992) The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism. J Metamorph Geol 10(2):221–237. https://doi.org/10.1111/j.1525-1314.1992.tb00080.x

    Article  Google Scholar 

  130. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183(1–2):73–90. https://doi.org/10.1016/j.pepi.2010.02.004

    Article  Google Scholar 

  131. Thakur V, Misra D (1984) Tectonic framework of the Indus and Shyok suture zones in eastern Ladakh, northwest Himalaya. Tectonophysics 101(3–4):207–220. https://doi.org/10.1016/0040-1951(84)90114-8

    Article  Google Scholar 

  132. Thakur V, Virdi N (1979) Lithostratigraphy, structural framework, deformation and metamorphism of the southeastern region of Ladakh, Kashmir Himalaya, India. Himal Geol 9:63–78

    Google Scholar 

  133. Tinkham DK, Ghent ED (2005) Estimating PT conditions of garnet growth with isochemical phase-diagram sections and the problem of effective bulk-composition. Can Mineral 43(1):35–50. https://doi.org/10.2113/gscanmin.43.1.35

    Article  Google Scholar 

  134. Tracy RJ (1982) Compositional zoning and inclusions in metamorphic minerals. Characterization of metamorphism through mineral equilibria. Rev Mineral 355–397

  135. Vance D, Mahar E (1998) Pressure-temperature paths from PT pseudosections and zoned garnets: potential, limitations and examples from the Zanskar Himalaya, NW India. Contrib Mineral Petrol 132:225–245. https://doi.org/10.1007/s004100050419

    Article  Google Scholar 

  136. Walker CB, Searle MP, Waters DJ (2001) An integrated tectonothermal model for the evolution of the High Himalaya in western Zanskar with constraints from thermobarometry and metamorphic modeling. Tectonics 20(6):810–833. https://doi.org/10.1029/2000TC001249

    Article  Google Scholar 

  137. Warren CJ, Waters DJ (2006) Oxidized eclogites and garnet-blueschists from Oman: P-T path modelling in the NCFMASHO system. J Metamorph Geol 24(9):783–802. https://doi.org/10.1111/j.1525-1314.2006.00668.x

    Article  Google Scholar 

  138. Warren CJ, Beaumont C, Jamieson RA (2008) Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet Sci Lett 267(1–2):129–145. https://doi.org/10.1016/j.epsl.2007.11.025

    Article  Google Scholar 

  139. Waters DJ, Martin HN (1996) The garnet-Cpx-phengite barometer. Recommended calibration and calculation method. https://www.earth.ox.ac.uk/~davewa/research/eclogites/ecbarcal.html

  140. Wei CJ, Clarke GL (2011) Calculated phase equilibria for MORB compositions: a reappraisal of the metamorphic evolution of lawsonite eclogite. J Metamorph Geol 29(9):939–952. https://doi.org/10.1111/j.1525-1314.2011.00948.x

    Article  Google Scholar 

  141. White R (2010) Tutorial for Using the readbulkinfo (rbi) Script. In, vol. THERMOCALC website.

  142. White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25(5):511–527. https://doi.org/10.1111/j.1525-1314.2007.00711.x

    Article  Google Scholar 

  143. White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014a) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32(3):261–286. https://doi.org/10.1111/jmg.12071

    Article  Google Scholar 

  144. White RW, Powell R, Johnson TE (2014b) The effect of Mn on mineral stability in metapelites revisited: new a-X relations for manganese-bearing minerals. J Metamorph Geol 32(8):809–828. https://doi.org/10.1111/jmg.12095

    Article  Google Scholar 

  145. Wilke FDH, O’Brien PJ, Altenberger U (2010a) Multistage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos 114:70–85. https://doi.org/10.1016/j.lithos.2009.07.015

    Article  Google Scholar 

  146. Wilke FDH, O’Brien PJ, Gerdes A, Timmerman MJ, Sudo M, Ahmed Khan M (2010b) The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages. Eur J Mineral 22:703–719. https://doi.org/10.1127/0935-1221/2010/0022-2051

    Article  Google Scholar 

  147. Wilke FDH, O'Brien PJ, Schmidt A, Ziemann MA (2015) Subduction, peak and multi-stage exhumation metamorphism: Traces from one coesite-bearing eclogite, Tso Morari, western Himalaya. Lithos 231:77–91. https://doi.org/10.1016/j.lithos.2015.06.007

    Article  Google Scholar 

  148. Worley B, Powell R (2000) High-precision relative thermobarometry: theory and a worked example. J Metamorph Geol 18(1):91–101. https://doi.org/10.1046/j.1525-1314.2000.00239.x

    Article  Google Scholar 

  149. Yu H, Zhang L, Lanari P, Rubatto D, Li X (2019) Garnet Lu-Hf geochronology and PT path of the Gridino-type eclogite in the Belomorian Province, Russia. Lithos 326:313–326. https://doi.org/10.1016/j.lithos.2018.12.032

    Article  Google Scholar 

  150. Zeh A (2006) Calculation of garnet fractionation in metamorphic rocks, with application to a flat-top, Y-rich garnet population from the Ruhla crystalline complex, Central Germany. J Petrol 47(12):2335–2356. https://doi.org/10.1093/petrology/egl046

    Article  Google Scholar 

Download references

Acknowledgements

We thank Emilee Darling for preparing the samples. C. Menold thanks Dennis Donaldson and Alex Webb for help in the field. The manuscript was greatly improved with the help of detailed reviews from two anonymous reviewers, to whom we are grateful. We also thank the CMP editorial team for their assistance in the review process. This research was funded by NSF EAR -1822524 to C. Macris and C. Menold.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Macris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Mark S Ghiorso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2020_1717_MOESM1_ESM.tif

Supplementary file1 Figure S1. Pseudosections and garnet phase boundaries constructed by (a) TC33, (b) TC47, (c) TDG, and (d) TDW, using incrementally fractionated bulk composition. 14 steps of garnet removal and EBC calculations have been performed. (TIF 20196 kb)

Supplementary file2 (DOCX 22 kb)

Supplementary file3 (DOCX 14 kb)

Supplementary file4 (DOCX 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Macris, C.A. & Menold, C.A. Thermodynamic modeling of high-grade metabasites: a case study using the Tso Morari UHP eclogite. Contrib Mineral Petrol 175, 78 (2020). https://doi.org/10.1007/s00410-020-01717-w

Download citation

Keywords

  • Metabasites
  • Thermodynamic modeling
  • Tso Morari
  • UHP eclogite
  • PT paths
  • Garnet fractionation