Skip to main content

Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps)

Abstract

Zircon is widely used to date metamorphic processes, particularly due to slow cation diffusion under crustal conditions. Here, we present laser-ablation depth profiling data that demonstrate rapid U diffusion in partially altered, high-pressure zircon. The zircons are hosted in metagabbros that underwent eclogite-facies (~ 550 °C, ~ 2.6 GPa) recrystallization during subduction of the Monviso meta-ophiolite. One metagabbro contains only newly grown zircons (50.2 ± 1.1 Ma); two coarser-grained samples exhibit thin metamorphic rims on igneous cores. Most profiles in the coarse-grained samples record discrete PbC-rich and Pb*-, U-, Th-, and trace-element poor rims in the outermost ≤ 5 µm of each grain, but U shows apparent diffusion profiles that extend ~ 10–15 µm into zircon crystals and correlate with U–Pb date resetting. The data define three populations (cores, diffusively reset rims, and newly precipitated rims) that form two two-component mixtures, indicating that recrystallization was everywhere coupled with U addition. Data from fully equilibrated rims form a single age population (51.1 ± 0.4 Ma) within error of the newly grown zircon and compatible with ~ 1 My fluid–rock interaction timescales. We interpret the U profiles as evidence of inward U diffusion associated with fluid-induced resorption, and systematically exclude other mechanisms for their formation. However, calculated diffusivity estimates are > 20 orders of magnitude faster than predicted by experiments. The absence of zircon lattice damage, and the propagation of diffusion inward of a reaction front, indicates a link between fluid-saturated zircon alteration and fast U diffusion in zircon. Our results emphasize that–-even at low temperature–-zircon U–Pb systematics may be affected by parent and/or daughter diffusion over length scales large enough to affect laser-ablation or ion microprobe spot analyses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Agard P, Jolivet L, Goffe B (2001) Tectonometamorphic evolution of the Schistes Lustres Complex; implications for the exhumation of HP and UHP rocks in the Western Alps. Bulletin Soc Géol Fr 172(5):617–636. https://doi.org/10.2113/172.5.617

    Article  Google Scholar 

  2. Agard P, Yamato P, Jolivet L, Burov E (2009) Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth Sci Rev 92(1):53–79. https://doi.org/10.1016/j.earscirev.2008.11.002

    Article  Google Scholar 

  3. Angiboust S, Agard P, Jolivet L, Beyssac O (2009) The Zermatt-Saas ophiolite: the largest (60-km wide) and deepest (c. 70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone? Terra Nova 21(3):171–180. https://doi.org/10.1111/j.1365-3121.2009.00870.x

    Article  Google Scholar 

  4. Angiboust S, Agard P, Raimbourg H, Yamato P, Huet B (2011) Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps). Lithos 127(1):222–238. https://doi.org/10.1016/j.lithos.2011.09.004

    Article  Google Scholar 

  5. Angiboust S, Agard P, Yamato P, Raimbourg H (2012a) Eclogite breccias in a subducted ophiolite: A record of intermediate-depth earthquakes? Geology 40(8):707–710. https://doi.org/10.1130/g32925.1

    Article  Google Scholar 

  6. Angiboust S, Langdon R, Agard P, Waters D, Chopin C (2012b) Eclogitization of the Monviso ophiolite (W. Alps) and implications on subduction dynamics. J Metamorph Geol 30(1):37–61. https://doi.org/10.1111/j.1525-1314.2011.00951.x

    Article  Google Scholar 

  7. Angiboust S, Pettke T, De Hoog JCM, Caron B, Oncken O (2014) Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. J Pet 55(5):883–916. https://doi.org/10.1093/petrology/egu010

    Article  Google Scholar 

  8. Ayers JC, Peters TJ (2018) Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800–1000 °C. Geochim Cosmochim Acta 223:60–74. https://doi.org/10.1016/j.gca.2017.11.025

    Article  Google Scholar 

  9. Ayers JC, Watson EB, Tarney J, Pickering KT, Knipe RJ, Dewey John F (1991) Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philos Trans R Soc Lond Ser A Phys Eng Sci 335(1638):365–375. https://doi.org/10.1098/rsta.1991.0052

    Article  Google Scholar 

  10. Ayers JC, Zhang L, Luo Y, Peters TJ (2012) Zircon solubility in alkaline aqueous fluids at upper crustal conditions. Geochim Cosmochim Acta 96:18–28. https://doi.org/10.1016/j.gca.2012.08.027

    Article  Google Scholar 

  11. Bacon CR, Sisson TW, Mazdab FK (2007) Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology 35(6):491–494. https://doi.org/10.1130/g23446a.1

    Article  Google Scholar 

  12. Belousova E, Griffin W, O'Reilly SY, Fisher N (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Pet 143(5):602–622. https://doi.org/10.1007/s00410-002-0364-7

    Article  Google Scholar 

  13. Beltrando M, Compagnoni R, Lombardo B (2010) (Ultra-) High-pressure metamorphism and orogenesis: an Alpine perspective. Gondwana Res 18(1):147–166. https://doi.org/10.1016/j.gr.2010.01.009

    Article  Google Scholar 

  14. Berman RG (1988) Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29(2):445–522. https://doi.org/10.1093/petrology/29.2.445

    Article  Google Scholar 

  15. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205(1):115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003

    Article  Google Scholar 

  16. Bloch E, Ganguly J, Hervig R, Cheng W (2015) 176Lu–176Hf geochronology of garnet I: experimental determination of the diffusion kinetics of Lu3+ and Hf4+ in garnet, closure temperatures and geochronological implications. Contrib Miner Pet 169(2):12. https://doi.org/10.1007/s00410-015-1109-8

    Article  Google Scholar 

  17. Broadwell KS, Locatelli M, Verlaguet A, Agard P, Caddick MJ (2019) Transient and periodic brittle deformation of eclogites during intermediate-depth subduction. Earth Planet Sci Lett 521:91–102. https://doi.org/10.1016/j.epsl.2019.06.008

    Article  Google Scholar 

  18. Brumsack H-J (2006) The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr Palaeoclimatol Palaeoecol 232(2–4):344–361. https://doi.org/10.1016/j.palaeo.2005.05.011

    Article  Google Scholar 

  19. Burnham AD, Berry AJ (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim Cosmochim Acta 95:196–212. https://doi.org/10.1016/j.gca.2012.07.034

    Article  Google Scholar 

  20. Burns PC, Ewing RC, Hawthorne FC (1997) The crystal chemistry of hexavalent uranium; polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can Mineralog 35(6):1551–1570

    Google Scholar 

  21. Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Miner 97(10):1598–1618. https://doi.org/10.2138/am.2012.4108

    Article  Google Scholar 

  22. Chen R-X, Zheng Y-F, Xie L (2010) Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U-Th–Pb and Lu–Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos 114(1–2):132–154. https://doi.org/10.1016/j.lithos.2009.08.006

    Article  Google Scholar 

  23. Cherniak DJ, Hanchar JM, Watson EB (1997a) Diffusion of tetravalent cations in zircon. Contrib Miner Pet 127(4):383–390. https://doi.org/10.1007/s004100050287

    Article  Google Scholar 

  24. Cherniak DJ, Hanchar JM, Watson EB (1997b) Rare-earth diffusion in zircon. Chem Geol 134(4):289–301. https://doi.org/10.1016/S0009-2541(96)00098-8

    Article  Google Scholar 

  25. Cherniak DJ, Lanford WA, Ryerson FJ (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques. Geochim Cosmochim Acta 55(6):1663–1673. https://doi.org/10.1016/0016-7037(91)90137-T

    Article  Google Scholar 

  26. Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172(1):5–24. https://doi.org/10.1016/S0009-2541(00)00233-3

    Article  Google Scholar 

  27. Cherniak DJ, Watson EB (2003) Diffusion in zircon. Rev Mineral Geochem 53(1):113–143. https://doi.org/10.2113/0530113

    Article  Google Scholar 

  28. Cliff RA, Barnicoat AC, Inger S (1998) Early tertiary eclogite facies metamorphism in the monviso ophiolite. J Metamorph Geol 16(3):447–455. https://doi.org/10.1111/j.1525-1314.1998.00147.x

    Article  Google Scholar 

  29. Cottle JM, Horstwood MSA, Parrish RR (2009) A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology. J Anal At Spectrom 24(10):1355–1363. https://doi.org/10.1039/B821899D

    Article  Google Scholar 

  30. Cottle JM, Kylander-Clark AR, Vrijmoed JC (2012) U-Th/Pb geochronology of detrital zircon and monazite by single shot laser ablation inductively coupled plasma mass spectrometry (SS-LA-ICPMS). Chem Geol 332–333:136–147. https://doi.org/10.1016/j.chemgeo.2012.09.035

    Article  Google Scholar 

  31. Coward M, Dietrich D (1989) Alpine tectonics—an overview. Geol Soc Lond, Sp Publ 45(1):1–29. https://doi.org/10.1144/gsl.sp.1989.045.01.01

    Article  Google Scholar 

  32. Crank J (1975) The mathematics of diffusion. Brunel University Press, Uxbridge

    Google Scholar 

  33. Debret B, Sverjensky DA (2017) Highly oxidising fluids generated during serpentinite breakdown in subduction zones. Sci Rep 7(1):10351. https://doi.org/10.1038/s41598-017-09626-y

    Article  Google Scholar 

  34. Demouchy S, Mackwell SJ, Kohlstedt DL (2007) Influence of hydrogen on Fe–Mg interdiffusion in (Mg, Fe)O and implications for Earth’s lower mantle. Contrib Miner Pet 154(3):279–289. https://doi.org/10.1007/s00410-007-0193-9

    Article  Google Scholar 

  35. Dickinson WR, Gehrels GE (2003) U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications. Sed Geol 163(1):29–66. https://doi.org/10.1016/S0037-0738(03)00158-1

    Article  Google Scholar 

  36. Dohmen R, Marschall HR, Ludwig T, Polednia J (2019) Diffusion of Zr, Hf, Nb and Ta in rutile: effects of temperature, oxygen fugacity, and doping level, and relation to rutile point defect chemistry. Phys Chem Miner 46(3):311–332. https://doi.org/10.1007/s00269-018-1005-7

    Article  Google Scholar 

  37. Duchêne S, Blichert-Toft J, Luais B, Télouk P, Lardeaux JM, Albarède F (1997) The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387(6633):586–589. https://doi.org/10.1038/42446

    Article  Google Scholar 

  38. Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. Rev Mineral Geochem 53(1):1–25. https://doi.org/10.2113/0530001

    Article  Google Scholar 

  39. Freymuth H, Andersen MB, Elliott T (2019) Uranium isotope fractionation during slab dehydration beneath the Izu arc. Earth Planet Sci Lett 522:244–254. https://doi.org/10.1016/j.epsl.2019.07.006

    Article  Google Scholar 

  40. Galvez ME, Connolly JAD, Manning CE (2016) Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 539:420. https://doi.org/10.1038/nature20103

    Article  Google Scholar 

  41. Gauthiez-Putallaz L, Rubatto D, Hermann J (2016) Dating prograde fluid pulses during subduction by in situ U-Pb and oxygen isotope analysis. Contrib Miner Pet 171(2):15. https://doi.org/10.1007/s00410-015-1226-4

    Article  Google Scholar 

  42. Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003a) Experimental hydrothermal alteration of partially metamict zircon. Am Miner 88(10):1496–1513. https://doi.org/10.2138/am-2003-1013

    Article  Google Scholar 

  43. Geisler T, Pidgeon RT, van Bronswijk W, Kurtz R (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191(1):141–154. https://doi.org/10.1016/S0009-2541(02)00153-5

    Article  Google Scholar 

  44. Geisler T, Rashwan AA, Rahn MKW, Poller U, Zwingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003b) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67(3):485–508. https://doi.org/10.1180/0026461036730112

    Article  Google Scholar 

  45. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of Zircon in Aqueous Fluids and Melts. Elements 3(1):43–50. https://doi.org/10.2113/gselements.3.1.43

    Article  Google Scholar 

  46. Groppo C, Castelli D (2010) Prograde P-T evolution of a lawsonite eclogite from the monviso meta-ophiolite (Western Alps): dehydration and redox reactions during subduction of oceanic FeTi-oxide gabbro. J Pet 51(12):2489–2514. https://doi.org/10.1093/petrology/egq065

    Article  Google Scholar 

  47. Grove M, Harrison TM (1999) Monazite Th-Pb age depth profiling. Geology 27(6):487–490. https://doi.org/10.1130/0091-7613(1999)027%3c0487:mtpadp%3e2.3.co;2

    Article  Google Scholar 

  48. Harley SL, Kelly NM, Möller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3(1):25–30. https://doi.org/10.2113/gselements.3.1.25

    Article  Google Scholar 

  49. Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Miner Pet 162(2):329–348. https://doi.org/10.1007/s00410-010-0599-7

    Article  Google Scholar 

  50. Hesse MA (2012) A finite volume method for trace element diffusion and partitioning during crystal growth. Comput Geosci 46:96–106. https://doi.org/10.1016/j.cageo.2012.04.009

    Article  Google Scholar 

  51. Hiess J, Condon DJ, McLean N, Noble SR (2012) 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335(6076):1610–1614

    Article  Google Scholar 

  52. Holder RM, Hacker BR, Seward GGE, Kylander-Clark ARC (2019) Interpreting titanite U-Pb dates and Zr thermobarometry in high-grade rocks: empirical constraints on elemental diffusivities of Pb, Al, Fe, Zr, Nb, and Ce. Contrib Miner Pet 174(5):42. https://doi.org/10.1007/s00410-019-1578-2

    Article  Google Scholar 

  53. Iacovino K, Guild MR, Till CB (2020) Aqueous fluids are effective oxidizing agents of the mantle in subduction zones. Contrib Miner Petrol 175(4):36. https://doi.org/10.1007/s00410-020-1673-4

    Article  Google Scholar 

  54. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211(1):47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  55. Kolesov BA, Geiger CA, Armbruster T (2001) The dynamic properties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy. Eur J Mineral 13(5):939–948. https://doi.org/10.1127/0935-1221/2001/0013-0939

    Article  Google Scholar 

  56. Kusiak MA, Dunkley DJ, Wirth R, Whitehouse MJ, Wilde SA, Marquardt K (2015) Metallic lead nanospheres discovered in ancient zircons. Proc Natl Acad Sci USA 112(16):4958–4963. https://doi.org/10.1073/pnas.1415264112

    Article  Google Scholar 

  57. Kusiak MA, Whitehouse MJ, Wilde SA, Nemchin AA, Clark C (2013) Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology. Geology 41(3):291–294. https://doi.org/10.1130/g33920.1

    Article  Google Scholar 

  58. Kylander-Clark ARC, Hacker BR, Cottle JM (2013) Laser-ablation split-stream ICP petrochronology. Chem Geol 345:99–112. https://doi.org/10.1016/j.chemgeo.2013.02.019

    Article  Google Scholar 

  59. Lagabrielle Y, Cannat M (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18(4):319–322. https://doi.org/10.1130/0091-7613(1990)018%3c0319:ajortm%3e2.3.co;2

    Article  Google Scholar 

  60. Lagabrielle Y, Lemoine M (1997) Alpine, Corsican and Apennine ophiolites: the slow-spreading ridge model. Comptes Rendus de l'Académie des Sci Ser IIA Earth Planet Sci 325(12):909–920. https://doi.org/10.1016/S1251-8050(97)82369-5

    Article  Google Scholar 

  61. Lagabrielle Y, Vitale Brovarone A, Ildefonse B (2015) Fossil oceanic core complexes recognized in the blueschist metaophiolites of Western Alps and Corsica. Earth Sci Rev 141:1–26. https://doi.org/10.1016/j.earscirev.2014.11.004

    Article  Google Scholar 

  62. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica Cosmochimica Acta 42(6):547–569. https://doi.org/10.1016/0016-7037(78)90001-7

    Article  Google Scholar 

  63. Lee JKW, Williams IS, Ellis DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390(6656):159–162. https://doi.org/10.1038/36554

    Article  Google Scholar 

  64. Li X-H, Faure M, Rossi P, Lin W, Lahondère D (2015) Age of Alpine Corsica ophiolites revisited: Insights from in situ zircon U-Pb age and O–Hf isotopes. Lithos 220–223:179–190. https://doi.org/10.1016/j.lithos.2015.02.006

    Article  Google Scholar 

  65. Lima RD, Prior MG, Stockli DF, Hayman NW (2018) Protracted heating of the orogenic crust in Death Valley, California, USA. Geology 46(4):315–318. https://doi.org/10.1130/g39865.1

    Article  Google Scholar 

  66. Locatelli M, Verlaguet A, Agard P, Federico L, Angiboust S (2018) Intermediate-depth brecciation along the subduction plate interface (Monviso eclogite, W. Alps). Lithos 320–321:378–402. https://doi.org/10.1016/j.lithos.2018.09.028

    Article  Google Scholar 

  67. Lombardo B, Nervo R, Compagnoni R, Messiga B, Kienast JR, Mevel C, Fiora L, Piccardo GB, Lanza R (1978) Osservazioni preliminari sulle ofioliti metamorfiche del Monviso (Alpi occidentali). Rendiconti Soc It Mineral Pet 34:253–305

    Google Scholar 

  68. Ludwig KR (2003) Isoplot 3.00: a geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication, Berkeley, USA

    Google Scholar 

  69. Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473(1):4–19. https://doi.org/10.1016/j.tecto.2008.07.021

    Article  Google Scholar 

  70. Martin LAJ, Duchêne S, Deloule E, Vanderhaeghe O (2008) Mobility of trace elements and oxygen in zircon during metamorphism: Consequences for geochemical tracing. Earth Planet Sci Lett 267(1):161–174. https://doi.org/10.1016/j.epsl.2007.11.029

    Article  Google Scholar 

  71. Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62(14):2509–2520. https://doi.org/10.1016/S0016-7037(98)00174-4

    Article  Google Scholar 

  72. Monié P, Philippot P (1989) Mise en evidence de l'age Eocene Moyen du metamorphisme de haute-pression dans la nappe ophiolitique du Monviso (Alpes Ocidentales) par la methode 40Ar-39Ar. Comptes Rendus de l'Académie des Sciences, Paris Ser 2(309):245–251

    Google Scholar 

  73. Murphy WM, Shock EL (1999) Environmental aqueous geochemistry of actinides. In: Burns PC, Finch RJ (eds) Uranium: mineralogy, geochemistry, and the environment, vol 38. Mineralogical Society of America, Chantilly, USA, p 679

    Google Scholar 

  74. Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon; a Raman spectroscopic study. Eur J Mineral 7(3):471–478

    Article  Google Scholar 

  75. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26(12):2508–2518. https://doi.org/10.1039/C1JA10172B

    Article  Google Scholar 

  76. Peterman EM, Reddy SM, Saxey DW, Snoeyenbos DR, Rickard WDA, Fougerouse D, Kylander-Clark ARC (2016) Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops. Sci Adv 2(9):e1601318. https://doi.org/10.1126/sciadv.1601318

    Article  Google Scholar 

  77. Philippot P, Kienast J-R (1989) Chemical-microstructural changes in eclogite-facies shear zones (Monviso, Western Alps, north Italy) as indicators of strain history and the mechanism and scale of mass transfer. Lithos 23(3):179–200. https://doi.org/10.1016/0024-4937(89)90004-2

    Article  Google Scholar 

  78. Philippot P, Selverstone J (1991) Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction. Contrib Miner Petrol 106(4):417–430. https://doi.org/10.1007/BF00321985

    Article  Google Scholar 

  79. Piccoli F, Hermann J, Pettke T, Connolly JAD, Kempf ED, Vieira Duarte JF (2019) Subducting serpentinites release reduced, not oxidized, aqueous fluids. Sci Rep 9(1):19573. https://doi.org/10.1038/s41598-019-55944-8

    Article  Google Scholar 

  80. Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Miner Pet 110(4):463–472. https://doi.org/10.1007/BF00344081

    Article  Google Scholar 

  81. Pidgeon RT (2014) Zircon radiation damage ages. Chem Geol 367:13–22. https://doi.org/10.1016/j.chemgeo.2013.12.010

    Article  Google Scholar 

  82. Pidgeon RT, Nemchin AA, Hitchen GJ (1998) Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contrib Miner Petrol 132(3):288–299. https://doi.org/10.1007/s004100050422

    Article  Google Scholar 

  83. Putnis A (2009) Mineral replacement reactions. Rev Miner Geochem 70(1):87–124. https://doi.org/10.2138/rmg.2009.70.3

    Article  Google Scholar 

  84. Putnis CV, Tsukamoto K, Nishimura Y (2005) Direct observations of pseudomorphism: compositional and textural evolution at a fluid-solid interface. Am Miner 90(11–12):1909–1912. https://doi.org/10.2138/am.2005.1990

    Article  Google Scholar 

  85. Rasmussen C, Stockli DF, Ross CH, Pickersgill A, Gulick SP, Schmieder M, Christeson GL, Wittmann A, Kring DA, Morgan JV (2019) U-Pb memory behavior in Chicxulub's peak ring—applying U-Pb depth profiling to shocked zircon. Chem Geol 525:356–367. https://doi.org/10.1016/j.chemgeo.2019.07.029

    Article  Google Scholar 

  86. Rioux M, Jöns N, Bowring S, Lissenberg CJ, Bach W, Kylander-Clark A, Hacker B, Dudás F (2014IB) U-Pb dating of interspersed gabbroic magmatism and hydrothermal metamorphism during lower crustal accretion, Vema lithospheric section, Mid-Atlantic Ridge. J Geophys Res Solid Earth 120(4):2014IB01168. https://doi.org/10.1002/2014JB011668

    Article  Google Scholar 

  87. Rubatto D (2017) Zircon: the metamorphic mineral. Rev Miner Geochem 83(1):261–295. https://doi.org/10.2138/rmg.2017.83.9

    Article  Google Scholar 

  88. Rubatto D, Angiboust S (2015) Oxygen isotope record of oceanic and high-pressure metasomatism: a P-T–time–fluid path for the Monviso eclogites (Italy). Contrib Miner Petrol 170(5):44. https://doi.org/10.1007/s00410-015-1198-4

    Article  Google Scholar 

  89. Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, Heildelberg, Berlin, pp 373–400

    Chapter  Google Scholar 

  90. Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67(12):2173–2187. https://doi.org/10.1016/S0016-7037(02)01321-2

    Article  Google Scholar 

  91. Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241(1–2):38–61. https://doi.org/10.1016/j.chemgeo.2007.01.027

    Article  Google Scholar 

  92. Rubatto D, Regis D, Hermann J, Boston K, Engi M, Beltrando M, McAlpine SRB (2011) Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nat Geosci 4:338. https://doi.org/10.1038/ngeo1124

    Article  Google Scholar 

  93. Schmidt C, Steele-MacInnis M, Watenphul A, Wilke M (2013) Calibration of zircon as a Raman spectroscopic pressure sensor to high temperatures and application to water-silicate melt systems. Am Miner 98(4):643–650. https://doi.org/10.2138/am.2013.4143

    Article  Google Scholar 

  94. Seydoux-Guillaume A-M, Bingen B, Paquette J-L, Bosse V (2015) Nanoscale evidence for uranium mobility in zircon and the discordance of U-Pb chronometers. Earth Planet Sci Lett 409:43–48. https://doi.org/10.1016/j.epsl.2014.10.044

    Article  Google Scholar 

  95. Shock EL, Sassani DC, Betz H (1997) Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochim Cosmochim Acta 61(20):4245–4266. https://doi.org/10.1016/S0016-7037(97)00240-8

    Article  Google Scholar 

  96. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1):1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

    Article  Google Scholar 

  97. Smye AJ, Jackson CRM, Konrad-Schmolke M, Hesse MA, Parman SW, Shuster DL, Ballentine CJ (2017) Noble gases recycled into the mantle through cold subduction zones. Earth Planet Sci Lett 471:65–73. https://doi.org/10.1016/j.epsl.2017.04.046

    Article  Google Scholar 

  98. Smye AJ, Marsh JH, Vermeesch P, Garber JM, Stockli DF (2018) Applications and limitations of U-Pb thermochronology to middle and lower crustal thermal histories. Chem Geol 494:1–18. https://doi.org/10.1016/j.chemgeo.2018.07.003

    Article  Google Scholar 

  99. Smye AJ, Stockli DF (2014) Rutile U-Pb age depth profiling: a continuous record of lithospheric thermal evolution. Earth Planet Sci Lett 408:171–182. https://doi.org/10.1016/j.epsl.2014.10.013

    Article  Google Scholar 

  100. Soman A, Geisler T, Tomaschek F, Grange M, Berndt J (2010) Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contrib Mineral Pet 160(6):909–930. https://doi.org/10.1007/s00410-010-0514-2

    Article  Google Scholar 

  101. Spandler C, Hermann J, Rubatto D (2004) Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. Am Mineral 89(11–12):1795. https://doi.org/10.2138/am-2004-11-1226

    Article  Google Scholar 

  102. Spandler C, Pettke T, Rubatto D (2011) Internal and external fluid sources for eclogite-facies veins in the monviso meta-ophiolite, Western Alps: implications for fluid flow in subduction zones. J Pet 52(6):1207–1236. https://doi.org/10.1093/petrology/egr025

    Article  Google Scholar 

  103. Spear FS, Ashley KT, Webb LE, Thomas JB (2012) Ti diffusion in quartz inclusions: implications for metamorphic time scales. Contrib Miner Pet 164(6):977–986. https://doi.org/10.1007/s00410-012-0783-z

    Article  Google Scholar 

  104. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221. https://doi.org/10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  105. Stearns MA, Cottle JM, Hacker BR, Kylander-Clark ARC (2016) Extracting thermal histories from the near-rim zoning in titanite using coupled U-Pb and trace-element depth profiles by single-shot laser-ablation split stream (SS-LASS) ICP-MS. Chem Geol 422:13–24. https://doi.org/10.1016/j.chemgeo.2015.12.011

    Article  Google Scholar 

  106. Steely AN, Hourigan JK, Juel E (2014) Discrete multi-pulse laser ablation depth profiling with a single-collector ICP-MS: Sub-micron U-Pb geochronology of zircon and the effect of radiation damage on depth-dependent fractionation. Chem Geol 372:92–108. https://doi.org/10.1016/j.chemgeo.2014.02.021

    Article  Google Scholar 

  107. Štípská P, Powell R, Hacker BR, Holder R, Kylander-Clark ARC (2016) Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). J Metamorph Geol 34(6):551–572. https://doi.org/10.1111/jmg.12193

    Article  Google Scholar 

  108. Sverjensky DA, Harrison B, Azzolini D (2014) Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60kb and 1200°C. Geochim Cosmochim Acta 129:125–145. https://doi.org/10.1016/j.gca.2013.12.019

    Article  Google Scholar 

  109. Taylor RJM, Clark C, Harley SL, Kylander-Clark ARC, Hacker BR, Kinny PD (2017) Interpreting granulite facies events through rare earth element partitioning arrays. J Metamorph Geol 35(7):759–775. https://doi.org/10.1111/jmg.12254

    Article  Google Scholar 

  110. Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Pet 44(11):1977–2002. https://doi.org/10.1093/petrology/egg067

    Article  Google Scholar 

  111. Tumiati S, Malaspina N (2019) Redox processes and the role of carbon-bearing volatiles from the slab–mantle interface to the mantle wedge. J Geol Soc 176(2):388–397. https://doi.org/10.1144/jgs2018-046

    Article  Google Scholar 

  112. Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE, Spicuzza MJ (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219. https://doi.org/10.1038/ngeo2075

    Article  Google Scholar 

  113. Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Miner Petrol 134(4):380–404. https://doi.org/10.1007/s004100050492

    Article  Google Scholar 

  114. Viete DR, Kylander-Clark ARC, Hacker BR (2015) Single-shot laser ablation split stream (SS-LASS) petrochronology deciphers multiple, short-duration metamorphic events. Chem Geol 415:70–86. https://doi.org/10.1016/j.chemgeo.2015.09.013

    Article  Google Scholar 

  115. Vitale Brovarone A, Beltrando M, Malavieille J, Giuntoli F, Tondella E, Groppo C, Beyssac O, Compagnoni R (2011) Inherited ocean-continent transition zones in deeply subducted terranes: insights from Alpine Corsica. Lithos 124(3):273–290. https://doi.org/10.1016/j.lithos.2011.02.013

    Article  Google Scholar 

  116. Vorhies SH, Ague JJ, Schmitt AK (2013) Zircon growth and recrystallization during progressive metamorphism, Barrovian zones, Scotland. Am Mineralog 98(1):219–230. https://doi.org/10.2138/am.2013.4240

    Article  Google Scholar 

  117. Wang Z, Hiraga T, Kohlstedt DL (2004) Effect of H+ on Fe–Mg interdiffusion in olivine, (Fe, Mg)2SiO4. Appl Phys Lett 85(2):209–211. https://doi.org/10.1063/1.1769593

    Article  Google Scholar 

  118. Watson EB, Chemiak DJ, Hanchar JM, Harrison TM, Wark DA (1997) The incorporation of Pb into zircon. Chem Geol 141(1):19–31. https://doi.org/10.1016/S0009-2541(97)00054-5

    Article  Google Scholar 

  119. Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett 148(3):527–544. https://doi.org/10.1016/S0012-821X(97)00057-5

    Article  Google Scholar 

  120. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95(1):185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  121. Wiedenbeck M (1995) An example of reverse discordance during ion microprobe zircon dating: an artifact of enhanced ion yields from a radiogenic labile Pb. Chem Geol 125(3):197–218. https://doi.org/10.1016/0009-2541(95)00072-T

    Article  Google Scholar 

  122. Wiedenbeck M, AllÉ P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt AV, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-TH-PB, LU-HF, trace element and ree analyses. Geostand Newslett 19(1):1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  123. Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Matter 12(8):1915–1925. https://doi.org/10.1088/0953-8984/12/8/333

    Article  Google Scholar 

  124. Zhang Y (2010) Diffusion in minerals and melts: theoretical background. Rev Miner Geochem 72(1):5–59. https://doi.org/10.2138/rmg.2010.72.2

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Starr for sharing field notes and sample context, H. Marschall for access to the SelFrag, J. Cottle for error propagation advice, J. Singer for CL expertise, and M. Wetherington for Raman assistance. We also acknowledge the ExTerra Field Institute and Research Endeavor (E-FIRE) program participants, including field assistance from P. Agard, M. Locatelli, and S. Angiboust. We are grateful to D. Rubatto, E. B. Watson, and two anonymous reviewers for comments that significantly improved the manuscript, and to D. Rubatto for editorial handling. This work was funded by National Science Foundation Grant OISE-1545903.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Garber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Daniela Rubatto.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garber, J.M., Smye, A.J., Feineman, M.D. et al. Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps). Contrib Mineral Petrol 175, 55 (2020). https://doi.org/10.1007/s00410-020-01692-2

Download citation

Keywords

  • Zircon
  • U–pb geochronology
  • Trace elements
  • Recrystallization
  • Dissolution-reprecipitation
  • Diffusion