Fast ascent rate during the 2017–2018 Plinian eruption of Ambae (Aoba) volcano: a petrological investigation

Abstract

In September 2017, after more than a hundred years of quiescence, Ambae (Aoba), Vanuatu’s largest volcano, entered a new phase of eruptive activity, triggering the evacuation of the island’s 11,000 inhabitants resulting in the largest volcanic disaster in the country’s history. Three subsequent eruptive phases in November 2017, March 2018, and July 2018 expelled some of the largest tropospheric and stratospheric SO2 clouds observed in the last decade. Here, we investigate the mechanisms and dynamics of this eruption. We use major elements, trace elements, and volatiles in olivine and clinopyroxene hosted melt inclusions, embayments, crystals, and matrix glasses together with clinopyroxene geobarometry and olivine, plagioclase, and clinopyroxene geothermometry to reconstruct the physical and chemical evolution of the magma, as it ascends to the surface. Volatile elements in melt inclusions and geobarometry data suggest that the magma originated from depth of ~ 14 km before residing at shallow (~ 0.5 to 3 km) levels. Magma ascent to the surface was likely facilitated by shallow phreatic eruptions that opened a pathway for magma to ascend. Succeeding eruptive phases are characterised by increasingly primitive compositions with evidence of small amounts of mixing having taken place. Mg–Fe exchange diffusion modelling yields olivine residence times in the magma chamber ranging from a few days to a year prior to eruption. Diffusion modelling of volatiles along embayments (melt channels) from the first two phases of activity and microlite number density suggests rapid magma ascent in the range of 15–270 km/h, 4–75 m/s (decompression rates of 0.1 to ~ 2 MPa/s) corresponding to a short travel time between the top of the shallow reservoir and the surface of less than 2 min.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Albert H, Costa F, Di Muro A et al (2019) Magma interactions, crystal mush formation, timescales, and unrest during caldera collapse and lateral eruption at ocean island basaltic volcanoes (Piton de la Fournaise, La Réunion). Earth Planet Sci Lett 515:187–199. https://doi.org/10.1016/j.epsl.2019.02.035

    Article  Google Scholar 

  2. Allard P, Aiuppa A, Bani P et al (2016) Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. J Volcanol Geotherm Res 322:119–143. https://doi.org/10.1016/j.jvolgeores.2015.10.004

    Article  Google Scholar 

  3. Almeev RR, Holtz F, Koepke J, Parat F (2012) Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa. Am Mineral 97:1234–1240. https://doi.org/10.2138/am.2012.4100

    Article  Google Scholar 

  4. Anderson AT, Brown GG (1993) CO2 contents and formation pressures of some Kilauean melt inclusions. Am Mineral 78:794–803

    Google Scholar 

  5. Bani P, Join J-L, Cronin SJ et al (2009a) Characteristics of the summit lakes of Ambae volcano and their potential for generating lahars. Nat Hazards Earth Syst Sci 9:1471–1478. https://doi.org/10.5194/nhess-9-1471-2009

    Article  Google Scholar 

  6. Bani P, Oppenheimer C, Varekamp JC et al (2009b) Remarkable geochemical changes and degassing at Voui crater lake, Ambae volcano, Vanuatu. J Volcanol Geotherm Res 188:347–357. https://doi.org/10.1016/j.jvolgeores.2009.09.018

    Article  Google Scholar 

  7. Beattie P (1993) Olivine_melt and orthopyroxene-melt equilibria. Contrib Min Petrol 115:103–111

    Article  Google Scholar 

  8. Bénard A, Klimm K, Woodland AB et al (2018) Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas. Nat Commun 9:3500. https://doi.org/10.1038/s41467-018-05804-2

    Article  Google Scholar 

  9. Bourdier J-L, Pratomo I, Thouret J-C et al (1997) Observations, stratigraphy and eruptive processes of the 1990 eruption of Kelut volcano, Indonesia. J Volcanol Geotherm Res 79:181–203. https://doi.org/10.1016/S0377-0273(97)00031-0

    Article  Google Scholar 

  10. Bouvier A-S, Métrich N, Deloule E (2008) Slab-derived fluids in the magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints. J Petrol 49:1427–1448. https://doi.org/10.1093/petrology/egn031

    Article  Google Scholar 

  11. Bucholz CE, Gaetani GA, Behn MD, Shimizu N (2013) Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet Sci Lett 374:145–155. https://doi.org/10.1016/j.epsl.2013.05.033

    Article  Google Scholar 

  12. Chen Y, Provost A, Schiano P, Cluzel N (2011) The rate of water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 162:625–636. https://doi.org/10.1007/s00410-011-0616-5

    Article  Google Scholar 

  13. Collot JY, Daniel J, Burne RV (1985) Recent tectonics associated with the subduction/collision of the d’entrecasteaux zone in the central New Hebrides. Tectonophysics 112:325–356. https://doi.org/10.1016/0040-1951(85)90185-4

    Article  Google Scholar 

  14. Daniel J, Gérard M, Mauffret A et al (1989) Déformation compressive d’un bassin intra-arc dans un contexte de collision ride/arc : le bassin d’Aoba, arc des Nouvelles-Hébrides. CR Acad Sci II 308:239–245

    Google Scholar 

  15. Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24. https://doi.org/10.1016/S0009-2541(01)00369-2

    Article  Google Scholar 

  16. Eggins SM (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114:79–100. https://doi.org/10.1007/BF00307867

    Article  Google Scholar 

  17. Ferguson DJ, Gonnermann HM, Ruprecht P et al (2016) Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments. Bull Volcanol 78:71. https://doi.org/10.1007/s00445-016-1064-x

    Article  Google Scholar 

  18. Firth C, Handley H, Turner S et al (2016) Variable conditions of magma storage and differentiation with links to eruption style at Ambrym volcano, Vanuatu. J Petrol 57:1049–1072. https://doi.org/10.1093/petrology/egw029

    Article  Google Scholar 

  19. Ford CE, Russell DG, Craven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–266. https://doi.org/10.1093/petrology/24.3.256

    Article  Google Scholar 

  20. Gaetani GA, O’Leary JA, Shimizu N et al (2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40:915–918. https://doi.org/10.1130/G32992.1

    Article  Google Scholar 

  21. Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosystems 3:1–35. https://doi.org/10.1029/2001GC000217

    Article  Google Scholar 

  22. Girona T, Costa F (2013) DIPRA: a user-friendly program to model multi-element diffusion in olivine with applications to timescales of magmatic processes. Geochem Geophys Geosystems 14:422–431. https://doi.org/10.1029/2012GC004427

    Article  Google Scholar 

  23. Gorshkov GS (1959) Gigantic eruption of the volcano bezymianny. Bull Volcanol 20:77–109. https://doi.org/10.1007/BF02596572

    Article  Google Scholar 

  24. Gorton MP (1977) The geochemistry and origin of quaternary volcanism in the New Hebrides. Geochim Cosmochim Acta 41:1257–1270. https://doi.org/10.1016/0016-7037(77)90071-0

    Article  Google Scholar 

  25. Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380. https://doi.org/10.1007/s004450050238

    Article  Google Scholar 

  26. Hauri E, Wang J, Dixon JE et al (2002) SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114. https://doi.org/10.1016/S0009-2541(01)00375-8

    Article  Google Scholar 

  27. Hier-Majumder S, Anderson IM, Kohlstedt DL (2005) Influence of protons on Fe–Mg interdiffusion in olivine. J Geophys Res Solid Earth. https://doi.org/10.1029/2004jb003292

    Article  Google Scholar 

  28. Humphreys MCS, Menand T, Blundy JD, Klimm K (2008) Magma ascent rates in explosive eruptions: constraints from H2O diffusion in melt inclusions. Earth Planet Sci Lett 270:25–40. https://doi.org/10.1016/j.epsl.2008.02.041

    Article  Google Scholar 

  29. Husen A, Almeev RR, Holtz F (2016) The effect of H2O and pressure on multiple saturation and liquid lines of descent in basalt from the Shatsky Rise. J Petrol 57:309–344. https://doi.org/10.1093/petrology/egw008

    Article  Google Scholar 

  30. Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F (2012) New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim Cosmochim Acta 97:1–23. https://doi.org/10.1016/j.gca.2012.08.035

    Article  Google Scholar 

  31. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis*. Geostand Newsl 4:43–47. https://doi.org/10.1111/j.1751-908X.1980.tb00273.x

    Article  Google Scholar 

  32. Jochum KP, Stoll B, Herwig K et al. (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst. https://doi.org/10.1029/2005gc001060

    Article  Google Scholar 

  33. Kamenetsky VS, Everard JL, Crawford AJ et al (2000) Enriched end-member of primitive MORB melts: petrology and geochemistry of glasses from Macquarie island (SW Pacific). J Petrol 41:411–430. https://doi.org/10.1093/petrology/41.3.411

    Article  Google Scholar 

  34. Kelley DF, Barton M (2008) Pressures of crystallization of icelandic magmas. J Petrol 49:465–492. https://doi.org/10.1093/petrology/egm089

    Article  Google Scholar 

  35. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92. https://doi.org/10.1007/BF00307328

    Article  Google Scholar 

  36. Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. Rev Mineral Geochem 24:25–64

    Google Scholar 

  37. Le Voyer M, Rose-Koga EF, Shimizu N et al (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595. https://doi.org/10.1093/petrology/egq030

    Article  Google Scholar 

  38. Lipman P, Mullineaux D (1981) The 1980 eruptions of Mount St. Helens. U.S. Dept. of the Interior, U.S. Geological Survey, Washington, DC

    Google Scholar 

  39. Liu Y, Anderson AT, Wilson CJN (2007) Melt pockets in phenocrysts and decompression rates of silicic magmas before fragmentation. J Geophys Res Solid Earth. https://doi.org/10.1029/2006jb004500

    Article  Google Scholar 

  40. Lloyd AS, Ruprecht P, Hauri EH et al (2014) NanoSIMS results from olivine-hosted melt embayments: magma ascent rate during explosive basaltic eruptions. J Volcanol Geotherm Res 283:1–18. https://doi.org/10.1016/j.jvolgeores.2014.06.002

    Article  Google Scholar 

  41. Massare D, Métrich N, Clocchiatti R (2002) High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H2O concentrations. Chem Geol 183:87–98. https://doi.org/10.1016/S0009-2541(01)00373-4

    Article  Google Scholar 

  42. Médard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Mineral Petrol 155:417–432. https://doi.org/10.1007/s00410-007-0250-4

    Article  Google Scholar 

  43. Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42. https://doi.org/10.2138/am-1998-1-203

    Article  Google Scholar 

  44. Mosbah M, Metrich N, Massiot P (1991) PIGME fluorine determination using a nuclear microprobe with application to glass inclusions. Nucl Instrum Methods Phys Res Sect B 58:227–231. https://doi.org/10.1016/0168-583X(91)95592-2

    Article  Google Scholar 

  45. Moussallam Y, Oppenheimer C, Scaillet B et al (2015) Megacrystals track magma convection between reservoir and surface. Earth Planet Sci Lett 413:1–12. https://doi.org/10.1016/j.epsl.2014.12.022

    Article  Google Scholar 

  46. Moussallam Y, Bani P, Schipper CI et al (2018) Unrest at the Nevados de Chillán volcanic complex: a failed or yet to unfold magmatic eruption? Volcanica 1:19–32. https://doi.org/10.30909/vol.01.01.1932

    Article  Google Scholar 

  47. Myers ML, Wallace PJ, Wilson CJN et al (2018) Ascent rates of rhyolitic magma at the onset of three caldera-forming eruptions. Am Mineral 103:952–965. https://doi.org/10.2138/am-2018-6225

    Article  Google Scholar 

  48. Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen Volcano. J Volcanol Geotherm Res 89:1–22. https://doi.org/10.1016/S0377-0273(98)00118-8

    Article  Google Scholar 

  49. Nemeth K, Cronin SJ, Charley DT et al (2006) Exploding lakes in Vanuatu-“Surtseyan-style” eruptions witnessed on Ambae Island. Massey University, New Zealand

    Google Scholar 

  50. NASA Earth Observatory (2019) The biggest eruption of 2018 was not where you think. https://earthobservatory.nasa.gov/images/144593/the-biggest-eruption-of-2018-was-not-where-you-think. Accessed 4 Mar 2019

  51. Óladóttir BA, Sigmarsson O, Larsen G, Thordarson T (2008) Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bull Volcanol 70:475–493. https://doi.org/10.1007/s00445-007-0150-5

    Article  Google Scholar 

  52. Pichavant M, Carlo ID, Rotolo SG et al (2013) Generation of CO2-rich melts during basalt magma ascent and degassing. Contrib Mineral Petrol 166:545–561. https://doi.org/10.1007/s00410-013-0890-5

    Article  Google Scholar 

  53. Pinel V, Jaupart C (2005) Some consequences of volcanic edifice destruction for eruption conditions. J Volcanol Geotherm Res 145:68–80. https://doi.org/10.1016/j.jvolgeores.2005.01.012

    Article  Google Scholar 

  54. Portnyagin M, Mironov N, Botcharnikov R et al (2019) Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts. Earth Planet Sci Lett 517:95–105. https://doi.org/10.1016/j.epsl.2019.04.021

    Article  Google Scholar 

  55. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120. https://doi.org/10.2138/rmg.2008.69.3

    Article  Google Scholar 

  56. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289. https://doi.org/10.1007/BF00371276

    Article  Google Scholar 

  57. Rose-Koga EF, Koga KT, Schiano P et al (2012) Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem Geol 334:266–279. https://doi.org/10.1016/j.chemgeo.2012.10.033

    Article  Google Scholar 

  58. Rose-Koga EF, Koga KT, Hamada M et al (2014) Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction. Earth Planets Space 66:81. https://doi.org/10.1186/1880-5981-66-81

    Article  Google Scholar 

  59. Ruth DCS, Costa F, de Maisonneuve CB et al (2018) Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption. Nat Commun 9:2657. https://doi.org/10.1038/s41467-018-05086-8

    Article  Google Scholar 

  60. Schiano P, Monzier M, Eissen J-P et al (2010) Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol 160:297–312. https://doi.org/10.1007/s00410-009-0478-2

    Article  Google Scholar 

  61. Sheehan F, Barclay J (2016) Staged storage and magma convection at Ambrym volcano, Vanuatu. J Volcanol Geotherm Res 322:144–157. https://doi.org/10.1016/j.jvolgeores.2016.02.024

    Article  Google Scholar 

  62. Shimizu K, Shimizu N, Komiya T et al (2009) CO2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia. Earth Planet Sci Lett 288:33–43. https://doi.org/10.1016/j.epsl.2009.09.005

    Article  Google Scholar 

  63. Shishkina TA, Botcharnikov RE, Holtz F et al (2010) Solubility of H2O–and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277:115–125. https://doi.org/10.1016/j.chemgeo.2010.07.014

    Article  Google Scholar 

  64. Sorbadere F, Schiano P, Métrich N, Garaebiti E (2011) Insights into the origin of primitive silica-undersaturated arc magmas of Aoba volcano (Vanuatu arc). Contrib Mineral Petrol 162:995–1009. https://doi.org/10.1007/s00410-011-0636-1

    Article  Google Scholar 

  65. Steele-Macinnis M, Esposito R, Bodnar RJ (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O–CO2 systematics of vapor-saturated, silicate melt inclusions. J Petrol 52:2461–2482. https://doi.org/10.1093/petrology/egr052

    Article  Google Scholar 

  66. Sugawara T (2000) Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. J Geophys Res 106:8457–8472

    Article  Google Scholar 

  67. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  68. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39. https://doi.org/10.1007/s00410-004-0629-4

    Article  Google Scholar 

  69. Toramaru A, Noguchi S, Oyoshihara S, Tsune A (2008) MND(microlite number density) water exsolution rate meter. J Volcanol Geotherm Res 175:156–167. https://doi.org/10.1016/j.jvolgeores.2008.03.035

    Article  Google Scholar 

  70. Wallace PJ, Kamenetsky VS, Cervantes P (2015) Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. Am Mineral 100:787–794. https://doi.org/10.2138/am-2015-5029

    Article  Google Scholar 

  71. Wang Z, Hiraga T, Kohlstedt DL (2004) Effect of H+ on Fe–Mg interdiffusion in olivine, (Fe, Mg)2SiO4. Appl Phys Lett 85:209–211. https://doi.org/10.1063/1.1769593

    Article  Google Scholar 

  72. Warden AJ (1970) Evolution of Aoba caldera volcano, New Hebrides. Bull Volcanol 34:107–140. https://doi.org/10.1007/BF02597781

    Article  Google Scholar 

  73. Wiart P (1995) Impact et gestion des risques volcaniques au Vanuatu. Notes Tech Sci Terre Geol-Géophysique N°13 Doc Trav ORSTOM 83. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/griseli/43111.pdf

  74. Witham F, Blundy J, Kohn SC et al (2012) SolEx: a model for mixed COHSCl-volatile solubilities and exsolved gas compositions in basalt. Comput Geosci 45:87–97. https://doi.org/10.1016/j.cageo.2011.09.021

    Article  Google Scholar 

  75. Yamamoto T, Nakamura Y, Glicken H (1999) Pyroclastic density current from the 1888 phreatic eruption of Bandai volcano, NE Japan. J Volcanol Geotherm Res 90:191–207. https://doi.org/10.1016/S0377-0273(99)00025-6

    Article  Google Scholar 

  76. Yang H-J, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol 124:1–18. https://doi.org/10.1007/s004100050169

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted following the 2017–2018 Ambae volcanic crisis. P.B. field assessment was funded by IRD. Y.M. acknowledges support from the CNRS (projet INSU-TelluS-SYSTER), National Geographic grant number CP-122R-17 (Trail by Fire II–Closing the Ring project) and from IRD. We thank Nordine Bouden and Etienne Deloule of CRPG (France) for their precious guidance during SIMS analysis. We thank Mhammed Benbakkar for ICP-AES analyses, Claire Fonquernie for help with sample preparation, and Jean-Marc Hénot for help with SEM and EBSD imaging. We thank Mike Jollands and anonymous referees for constructive and beneficial comments on the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yves Moussallam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moussallam, Y., Rose-Koga, E.F., Koga, K.T. et al. Fast ascent rate during the 2017–2018 Plinian eruption of Ambae (Aoba) volcano: a petrological investigation. Contrib Mineral Petrol 174, 90 (2019). https://doi.org/10.1007/s00410-019-1625-z

Download citation

Keywords

  • Volatile
  • Melt inclusion
  • Magma ascent
  • Basaltic eruption
  • Geo-speedometer