Advertisement

CO2–H2O solubility in K-rich phonolitic and leucititic melts

  • Maximilian SchanofskiEmail author
  • Sara Fanara
  • Burkhard C. Schmidt
Original Paper
  • 222 Downloads

Abstract

The solubility of CO2 and H2O in phonolitic and leucititic melts from Vesuvius and Colli Albani was investigated experimentally at 1250 °C and pressures between 50 and 300 MPa as a function of CO2–H2O fluid composition. Quenched glasses were analyzed for their volatile contents by thermogravimetry, carbon–sulfur analysis, and Fourier transform infrared (FTIR) spectroscopy, which enabled the determination of the absorption coefficients of the H2O- and CO2-related IR bands at 5200 cm−1 (H2O molecules), 4500 cm−1 (OH groups), and the carbonate doublet at 1510 and 1430 cm−1. No molecular CO2 was detected in our phonolitic and leucititic glasses. Leucititic glasses with elevated CO2 concentrations (approaching total absorption in transmission FTIR measurements) were also analyzed quantitatively by micro-ATR (attenuated total reflection) IR spectroscopy. While the water solubility in both melts is quite similar for pure H2O as well as for mixed CO2–H2O fluids (at given \( f_{{{\text{H}}_{ 2} {\text{O}}}} \)), the CO2 solubility depends strongly on melt composition. In the range of 100–300 MPa, the solubility of pure CO2 increases from 580 to 1800 ppm in the phonolite melt and from 2950 to 8460 ppm in the leucitite melt. For the leucitite melt, we observe a single power law trend of CO2 solubility as function of \( f_{{{\text{CO}}_{ 2} }} \), regardless if the melt was equilibrated with pure CO2 or mixed CO2–H2O fluids, indicating that water acts as diluent of the fluid phase. However, for the phonolite melt, we observe for mixed CO2–H2O samples a positive solubility deviation from the power law trend defined by the data for pure CO2 solubility. This effect seems to increase with increasing water content and pressure. Our interpretation is that this enhanced CO2 solubility is caused by melt depolymerization induced by water and is more apparent in the relatively polymerized phonolitic melt compared to the relatively depolymerized leucititic melt.

Keywords

H2O–CO2 solubility Phonolite Leucitite FTIR-ATR Mt. Somma–Vesuvius Colli Albani High-K silicate melts Fugacity 

Notes

Acknowledgements

This research has been partly supported by the Deutsche Forschungsgemeinschaft research Grant FA 1477/1-1. Sara Fanara thanks Daniel Wirtz, Matthias Liebchen, Max Tschoppe, and Gerrit Zöllner who helped with their bachelor thesis and their student projects to lay the groundwork for this research. Maximilian Schanofski thanks Oliver Löwe for help with ATR-MIR measurements. The authors appreciated the support of Marina Horstmann and Lennart Koch in CS analyses and sample preparations. This paper benefited from discussions with Prof. Danilo Palladino and Dr. Gianluca Sottili for selecting the most representative compositions for the ultrapotassic trend in central Italy. This work benefited from constructive reviews by an anonymous reviewer and Prof. M. Carroll.

Supplementary material

410_2019_1581_MOESM1_ESM.xlsx (30 kb)
Supplementary material 1 (XLSX 30 kb)

References

  1. Aranovich LY, Newton RC (1999) Experimental determination of CO2–H2O activity-composition relations at 600–1000 °C and 6–14 kbar by reversed decarbonation and dehydration reactions. Am Mineral 84:1319–1332.  https://doi.org/10.2138/am-1999-0908 CrossRefGoogle Scholar
  2. Aubaud C, Hirschmann MM, Withers AC, Hervig RL (2008) Hydrogen partitioning between melt, clinopyroxene, and garnet at 3 GPa in a hydrous MORB with 6 wt% H2O. Contrib Mineral Petrol 156:607–625.  https://doi.org/10.1007/s00410-008-0304-2 CrossRefGoogle Scholar
  3. Behrens H, Romano C, Nowak M, Holtz F, Dingwell DB (1996) Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K): an interlaboratory study. Chem Geol 128:41–63.  https://doi.org/10.1016/0009-2541(95)00162-X CrossRefGoogle Scholar
  4. Behrens H, Ohlhorst S, Holtz F, Champenois M (2004) CO2 solubility in dacitic melts equilibrated with H2O–CO2 fluids: implications for modeling the solubility of CO2 in silicic melts. Geochim et Cosmochim Acta 68:4687–4703.  https://doi.org/10.1016/j.gca.2004.04.019 CrossRefGoogle Scholar
  5. Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. Am Mineral 94:105–120.  https://doi.org/10.2138/am.2009.2796 CrossRefGoogle Scholar
  6. Benne D, Behrens H (2003) Water solubility in haplobasaltic melts. Eur J Mineral 15:803–814.  https://doi.org/10.1127/0935-1221/2003/0015-0803 CrossRefGoogle Scholar
  7. Blank JG, Brooker RA (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior. In: Carroll MR, Holloway JR (eds) Volatiles in Magmas, vol 30. Reviews in Mineralogy. Mineralogical Society of America, Washington, pp 157–186.  https://doi.org/10.2138/rmg.1994.30.5 CrossRefGoogle Scholar
  8. Blank JG, Stolper EM, Carroll MR (1993) Solubilities of carbon dioxide and water in rhyolitic melt at 850 °C and 750 bars. Earth Planet Sci Lett 119:27–36.  https://doi.org/10.1016/0012-821X(93)90004-S CrossRefGoogle Scholar
  9. Botcharnikov RE, Behrens H, Holtz F (2006) Solubility and speciation of C–O–H fluids in andesitic melt at T = 1100–1300 °C and P = 200 and 500 MPa. Chem Geol 229:125–143.  https://doi.org/10.1016/j.chemgeo.2006.01.016 CrossRefGoogle Scholar
  10. Brooker RA, Kohn SC, Holloway JR, McMillan PF, Carroll MR (1999) Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join. Geochim et Cosmochim Acta 63:3549–3565.  https://doi.org/10.1016/S0016-7037(99)00196-9 CrossRefGoogle Scholar
  11. Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts. Chem Geol 174:225–239.  https://doi.org/10.1016/S0009-2541(00)00353-3 CrossRefGoogle Scholar
  12. Bruno PPG, Cippitelli G, Rapolla A (1998) Seismic study of the Mesozoic carbonate basement around Mt. Somma–Vesuvius, Italy. J Volcanol Geotherm Res 84:311–322.  https://doi.org/10.1016/S0377-0273(98)00023-7 CrossRefGoogle Scholar
  13. Burnham CW (1979) The importance of volatile constituents. In: Yoder HS Jr (ed) The evolution of the igneous rocks: fifteenth anniversary perspectives. Princeton University Press, Princeton, pp 439–482Google Scholar
  14. Caricchi L, Sheldrake TE, Blundy J (2018) Modulation of magmatic processes by CO2 flushing. Earth Planet Sci Lett 491:160–171.  https://doi.org/10.1016/j.epsl.2018.03.042 CrossRefGoogle Scholar
  15. Cioni R (2000) Volatile content and degassing processes in the AD 79 magma chamber at Vesuvius (Italy). Contrib Mineral Petrol 140:40–54.  https://doi.org/10.1007/s004100000167 CrossRefGoogle Scholar
  16. D’Antonio M (2011) Lithology of the basement underlying the Campi Flegrei caldera: volcanological and petrological constraints. J Volcanol Geotherm Res 200:91–98.  https://doi.org/10.1016/j.jvolgeores.2010.12.006 CrossRefGoogle Scholar
  17. Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma–carbonate interaction processes and associated CO2 release at Merapi Volcano, Indonesia: insights from experimental petrology. J Petrol 51:1027–1051.  https://doi.org/10.1093/petrology/egq010 CrossRefGoogle Scholar
  18. Duan X (2014) A general model for predicting the solubility behavior of H2O–CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions. Geochim et Cosmochim Acta 125:582–609.  https://doi.org/10.1016/j.gca.2013.10.018 CrossRefGoogle Scholar
  19. Duan Z, Zhang Z (2006) Equation of state of the H2O, CO2, and H2O–CO2 systems up to 10 GPa and 2573.15 K: molecular dynamics simulations with ab initio potential surface. Geochim et Cosmochim Acta 70:2311–2324.  https://doi.org/10.1016/j.gca.2006.02.009 CrossRefGoogle Scholar
  20. Fanara S, Behrens H, Zhang Y (2013) Water diffusion in potassium-rich phonolitic and trachytic melts. Chem Geol 346:149–161.  https://doi.org/10.1016/j.chemgeo.2012.09.030 CrossRefGoogle Scholar
  21. Fanara S, Botcharnikov RE, Palladino DM, Adams F, Buddensieck J, Mulch A, Behrens H (2015) Volatiles in magmas related to the Campanian Ignimbrite eruption: experiments vs. natural findings. Am Mineral 100:2284–2297.  https://doi.org/10.2138/am-2015-5033 CrossRefGoogle Scholar
  22. Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni Eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120.  https://doi.org/10.1016/S0377-0273(97)00007-3 CrossRefGoogle Scholar
  23. Freda C, Gaeta M, Giaccio B, Marra F, Palladino DM, Scarlato P, Sottili G (2011) CO2-driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy). Bull Volcanol 73:241–256.  https://doi.org/10.1007/s00445-010-0406-3 CrossRefGoogle Scholar
  24. Gaeta M, Freda C, Christensen JN, Dallai L, Marra F, Karner DB, Scarlato P (2006) Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): clues to the source and evolution of ultrapotassic magmas. Lithos 86:330–346.  https://doi.org/10.1016/j.lithos.2005.05.010 CrossRefGoogle Scholar
  25. Ghiorso MS, Gualda GAR (2015) An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petrol 169:1245.  https://doi.org/10.1007/s00410-015-1141-8 CrossRefGoogle Scholar
  26. Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, Schmidt SC (2001) Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatépetl volcano, Mexico. Chem Geol 177:133–156.  https://doi.org/10.1016/S0009-2541(00)00387-9 CrossRefGoogle Scholar
  27. Iacono Marziano G (2004) Equilibrium and disequilibrium degassing of a phonolitic melt simulated by decompression experiments. Dissertation, University of PalermoGoogle Scholar
  28. Iacono Marziano G, Schmidt BC, Dolfi D (2007) Equilibrium and disequilibrium degassing of a phonolitic melt (Vesuvius AD 79 “white pumice”) simulated by decompression experiments. J Volcanol Geotherm Res 161:151–164.  https://doi.org/10.1016/j.jvolgeores.2006.12.001 CrossRefGoogle Scholar
  29. Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F (2012) New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim et Cosmochim Acta 97:1–23.  https://doi.org/10.1016/j.gca.2012.08.035 CrossRefGoogle Scholar
  30. Jeffery AJ, Gertisser R, Troll VR, Jolis EM, Dahren B, Harris C, Tindle AG, Preece K, O’Driscoll B, Humaida H, Chadwick JP (2013) The pre-eruptive magma plumbing system of the 2007–2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contrib Mineral Petrol 166:275–308.  https://doi.org/10.1007/s00410-013-0875-4 CrossRefGoogle Scholar
  31. Jolis EM, Troll VR, Harris C, Freda C, Gaeta M, Orsi G, Siebe C (2015) Skarn xenolith record crustal CO2 liberation during Pompeii and Pollena eruptions, Vesuvius volcanic system, central Italy. Chem Geol 415:17–36.  https://doi.org/10.1016/j.chemgeo.2015.09.003 CrossRefGoogle Scholar
  32. King PL, Holloway JR (2002) CO2 solubility and speciation in intermediate (andesitic) melts: the role of H2O and composition. Geochim et Cosmochim Acta 66:1627–1640.  https://doi.org/10.1016/S0016-7037(01)00872-9 CrossRefGoogle Scholar
  33. Lentini F (1982) The geology of the Mt. Etna basement. Mem Soc Geol Ital 23:7–25Google Scholar
  34. Lesne P, Scaillet B, Pichavant M, Beny J-M (2011a) The carbon dioxide solubility in alkali basalts: an experimental study. Contrib Mineral Petrol 162:153–168.  https://doi.org/10.1007/s00410-010-0585-0 CrossRefGoogle Scholar
  35. Lesne P, Scaillet B, Pichavant M, Iacono-Marziano G, Beny J-M (2011b) The H2O solubility of alkali basaltic melts: an experimental study. Contrib Mineral Petrol 162:133–151.  https://doi.org/10.1007/s00410-010-0588-x CrossRefGoogle Scholar
  36. Lowenstern JB, Pitcher BW (2013) Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy. Am Mineral 98:1660–1668.  https://doi.org/10.2138/am.2013.4466 CrossRefGoogle Scholar
  37. Mattey DP (1991) Carbon dioxide solubility and carbon isotope fractionation in basaltic melt. Geochim et Cosmochim Acta 55:3467–3473.  https://doi.org/10.1016/0016-7037(91)90508-3 CrossRefGoogle Scholar
  38. Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42.  https://doi.org/10.2138/am-1998-1-203 CrossRefGoogle Scholar
  39. Moussallam Y, Morizet Y, Gaillard F (2016) H2O–CO2 solubility in low SiO2-melts and the unique mode of kimberlite degassing and emplacement. Earth Planet Sci Lett 447:151–160.  https://doi.org/10.1016/j.epsl.2016.04.037 CrossRefGoogle Scholar
  40. Mysen BO, Arculus RJ, Eggler DH (1975) Solubility of carbon dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure. Contrib Mineral Petrol 53:227–239.  https://doi.org/10.1007/BF00382441 CrossRefGoogle Scholar
  41. Mysen BO, Eggler DH, Seitz MG, Holloway JR (1976) Carbon dioxide in silicate melts and crystals; part I, solubility measurements. Am J Sci 276:455–479.  https://doi.org/10.2475/ajs.276.4.455 CrossRefGoogle Scholar
  42. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604.  https://doi.org/10.1016/S0098-3004(01)00081-4 CrossRefGoogle Scholar
  43. Ni H, Keppler H (2013) Carbon in silicate melts. Rev Mineral Geochem 75:251–287CrossRefGoogle Scholar
  44. Norini G, Capra L, Groppelli G, Agliardi F, Pola A, Cortes A (2010) Structural architecture of the Colima Volcanic Complex. J Geophys Res 115:1808.  https://doi.org/10.1029/2010JB007649 CrossRefGoogle Scholar
  45. Pan V, Holloway JR, Hervig RL (1991) The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts. Geochim et Cosmochim Acta 55:1587–1595.  https://doi.org/10.1016/0016-7037(91)90130-W CrossRefGoogle Scholar
  46. Papale P (1999) Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids. Am Mineral 84:477–492.  https://doi.org/10.2138/am-1999-0402 CrossRefGoogle Scholar
  47. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95.  https://doi.org/10.1016/j.chemgeo.2006.01.013 CrossRefGoogle Scholar
  48. Roux J, Lefèvre A (1992) A fast-quench device for internally heated pressure vessels. Eur J Mineral 4:279–282.  https://doi.org/10.1127/ejm/4/2/0279 CrossRefGoogle Scholar
  49. Schmidt BC, Behrens H (2008) Water solubility in phonolite melts: influence of melt composition and temperature. Chem Geol 256:259–268.  https://doi.org/10.1016/j.chemgeo.2008.06.043 CrossRefGoogle Scholar
  50. Schmidt BC, Blum-Oeste N, Flagmeier J (2013) Water diffusion in phonolite melts. Geochim Cosmochim Acta 107:220–230.  https://doi.org/10.1016/j.gca.2012.12.044 CrossRefGoogle Scholar
  51. Scholze H (1960) Zur Frage der Unterscheidung zwischen H2O-Molekeln und OH-Gruppen in Gläsern und Mineralen. Naturwissenschaften 10:226–227CrossRefGoogle Scholar
  52. Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Portnyagin MV (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277:115–125.  https://doi.org/10.1016/j.chemgeo.2010.07.014 CrossRefGoogle Scholar
  53. Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Jazwa AM, Jakubiak AA (2014) Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts. Chem Geol 388:112–129.  https://doi.org/10.1016/j.chemgeo.2014.09.001 CrossRefGoogle Scholar
  54. Tamic N, Behrens H, Holtz F (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chem Geol 174:333–347.  https://doi.org/10.1016/S0009-2541(00)00324-7 CrossRefGoogle Scholar
  55. Thibault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. Contrib Mineral Petrol 116:216–224.  https://doi.org/10.1007/BF00310701 CrossRefGoogle Scholar
  56. Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39:11.  https://doi.org/10.1029/2012GL051307 CrossRefGoogle Scholar
  57. Vetere F, Botcharnikov RE, Holtz F, Behrens H, de Rosa R (2011) Solubility of H2O and CO2 in shoshonitic melts at 1250 °C and pressures from 50 to 400 MPa: implications for Campi Flegrei magmatic systems. J Volcanol Geotherm Res 202:251–261.  https://doi.org/10.1016/j.jvolgeores.2011.03.002 CrossRefGoogle Scholar
  58. Vetere F, Holtz F, Behrens H, Botcharnikov RE, Fanara S (2014) The effect of alkalis and polymerization on the solubility of H2O and CO2 in alkali-rich silicate melts. Contrib Mineral Petrol 167:298.  https://doi.org/10.1007/s00410-014-1014-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Abteilung Experimentelle und Angewandte MineralogieGeorg August Universität GöttingenGöttingenGermany

Personalised recommendations