Advertisement

New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico

  • Nicholas E. TimmsEmail author
  • Mark A. Pearce
  • Timmons M. Erickson
  • Aaron J. Cavosie
  • Auriol S. P. Rae
  • John Wheeler
  • Axel Wittmann
  • Ludovic Ferrière
  • Michael H. Poelchau
  • Naotaka Tomioka
  • Gareth S. Collins
  • Sean P. S. Gulick
  • Cornelia Rasmussen
  • Joanna V. Morgan
  • IODP-ICDP Expedition 364 Scientists
Original Paper

Abstract

Accessory mineral geochronometers such as apatite, baddeleyite, monazite, xenotime and zircon are increasingly being recognized for their ability to preserve diagnostic microstructural evidence of hypervelocity-impact processes. To date, little is known about the response of titanite to shock metamorphism, even though it is a widespread accessory phase and a U–Pb geochronometer. Here we report two new mechanical twin modes in titanite within shocked granitoid from the Chicxulub impact structure, Mexico. Titanite grains in the newly acquired core from the International Ocean Discovery Program Hole M0077A preserve multiple sets of polysynthetic twins, most commonly with composition planes (K1) = ~ \(\{ \bar{1}{11}\}\), and shear direction (η1) = < 110 > , and less commonly with the mode K1 = {130}, η1 = ~ <522 > . In some grains, {130} deformation bands have formed concurrently with the deformation twins, indicating dislocation slip with Burgers vector b = < 341 > can be active during impact metamorphism. Titanite twins in the modes described here have not been reported from endogenically deformed rocks; we, therefore, propose this newly identified twin form as a result of shock deformation. Formation conditions of the twins have not been experimentally calibrated, and are here empirically constrained by the presence of planar deformation features in quartz (12 ± 5 and ~ 17 ± 5 GPa) and the absence of shock twins in zircon (< 20 GPa). While the lower threshold of titanite twin formation remains poorly constrained, identification of these twins highlight the utility of titanite as a shock indicator over the pressure range between 12 and 17 GPa. Given the challenges to find diagnostic indicators of shock metamorphism to identify both ancient and recent impact evidence on Earth, microstructural analysis of titanite is here demonstrated to provide a new tool for recognizing impact deformation in rocks where other impact evidence may be erased, altered, or did not manifest due to generally low (< 20 GPa) shock pressure.

Keywords

Titanite Shock metamorphism Mechanical twinning Dislocation slip system Meteorite impact EBSD 

Notes

Acknowledgements

The Chicxulub drilling expedition was funded by the IODP as Expedition 364 with co-funding from the ICDP, implementation by ECORD, and contributions and logistical support from the Yucatán state government and UNAM. This research used samples provided by the IODP, funding provided by a UK IODP NERC Grant (NE/P011195/1), and a Tescan Mira3 FE-SEM (ARC LE130100053) at the John de Laeter Centre, Curtin University. ASPR received support from the Barringer Family Fund for Meteorite Impact Research and STFC (ST/J001260/1), and thanks R.A.F. Grieve and G.R. Osinski for their support. AJC acknowledges support from the NASA Astrobiology program (Grant #NNAI3AA94A) and a Curtin Senior Research Fellowship. TME acknowledges support from a Lunar and Planetary Institute Postdoctoral Research Fellowship, the Center for Lunar Science and Exploration, and D. Kring. AW, SG, and CR are supported by National Science Foundation (OCE-1737087 and 1737351). This is a UTIG Contribution #3447. J. Darling, W.U. Reimold, and two anonymous reviewers are thanked for their comments on earlier versions of the manuscript. We thank D. Rubatto for editorial handling.

IODP-ICDP Expedition 364 Scientists, S. P. S. Gulick: Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA, J. V. Morgan: Department of Earth Science and Engineering, Imperial College London, London, UK, E. Chenot: Géosciences Montpellier, Université de Montpellier, Montpellier, France, G. L. Christeson: Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA, P. Claeys: Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium, C. S. Cockell: Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK, M. J. L. Coolen: Department of Chemistry, WA-Organic and Isotope Geochemistry Centre, Curtin University, Perth, Western Australia, Australia, L. Ferrière: Natural History Museum, Vienna, Austria, C. Gebhardt: Alfred Wegener Institute Helmholtz Centre of Polar and Marine Research, Bremerhaven, Germany, K. Goto: International Research Institute of Disaster Science, Tohoku University, Sendai, Japan, S. Green: British Geological Survey, Edinburgh, UK, H. Jones: Department of Geosciences, Pennsylvania State University, University Park, PA, USA, D. A. Kring: Lunar and Planetary Institute, Houston, TX, USA, J. Lofi: Géosciences Montpellier, Université de Montpellier, Montpellier, France, C. M. Lowery: Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA, R. Ocampo-Torres: Groupe de Physico-Chimie de l’Atmosphère, L’Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), Université de Strasbourg, Strasbourg, France, L. Perez-Cruz: Instituto de Geofísica, Universidad Nacional Autónoma De México, Ciudad De México, Mexico, A. E. Pickersgill: School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK, Argon Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride, UK, M. H. Poelchau: Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität, Freiburg, Germany, A. S. P. Rae: Department of Earth Science and Engineering, Imperial College London, London, UK, Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität, Freiburg, Germany, C. Rasmussen: Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA, Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA, M. Rebolledo-Vieyra: Independent consultant, Cancun, Mexico, U. Riller: Institut für Geologie, Universität Hamburg, Hamburg, Germany, H. Sato: Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan, J. Smit: Faculty of Earth and Life Sciences (FALW), Vrije Universiteit Amsterdam, Amsterdam, Netherlands, S. M. Tikoo: Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA, N. Tomioka: Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan, J. Urrutia-Fucugauchi: Instituto de Geofísica, Universidad Nacional Autónoma De México, Ciudad De México, Mexico, M. T. Whalen: Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK, USA, A. Wittmann: Eyring Materials Center, Arizona State University, Tempe, AZ, USA, L. Xiao: School of Earth Sciences, Planetary Science Institute, China University of Geosciences, Wuhan, China, K. E. Yamaguchi: Department of Chemistry, Toho University, Chiba, Japan, NASA Astrobiology Institute.

References

  1. Abadian M (1972) Petrography, shock metamorphism and genesis of polymict crystalline breccias in the Nordlinger Ries. Contrib Miner Petrol 35(3):245CrossRefGoogle Scholar
  2. Angel RJ, Kunz M, Miletich R, Woodland AB, Koch M, Xirouchakis D (1999) High-pressure phase transition in CaTiOSiO4 titanite. Phase Transit 68(3):533–543.  https://doi.org/10.1080/01411599908224532 CrossRefGoogle Scholar
  3. Bestmann M, Prior DJ (2003) Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization. J Struct Geol 25(10):1597–1613.  https://doi.org/10.1016/s0191-8141(03)00006-3 CrossRefGoogle Scholar
  4. Biren MB, Spray JG (2011) Shock veins in the central uplift of the Manicouagan impact structure: context and genesis. Earth Planet Sci Lett 303(3–4):310–322.  https://doi.org/10.1016/j.epsl.2011.01.003 CrossRefGoogle Scholar
  5. Bonamici CE, Fanning CM, Kozdon R, Fournelle JH, Valley JW (2015) Combined oxygen-isotope and U-Pb zoning studies of titanite: new criteria for age preservation. Chem Geol 398:70–84.  https://doi.org/10.1016/j.chemgeo.2015.02.002 CrossRefGoogle Scholar
  6. Borg IY (1970) Mechanical < 110 > twinning in shocked sphene. Am Miner 55:1876–1888Google Scholar
  7. Borg IY, Heard HC (1972) Mechanical twinning in sphene at 8 Kbar, 25° to 500° C. Geol Soc Am Memoirs 132:585–592CrossRefGoogle Scholar
  8. Boyle AP, Prior DJ, Banham MH, Timms NE (1998) Plastic deformation of metamorphic pyrite: new evidence from electron-backscatter diffraction and forescatter orientation-contrast imaging. Miner Deposit 34(1):71–81.  https://doi.org/10.1007/s001260050186 CrossRefGoogle Scholar
  9. Bunge HJ (1981) Fabric analysis by orientation distribution functions. Tectonophysics 78(1–4):1–21CrossRefGoogle Scholar
  10. Cavosie AJ, Erickson TM, Timms NE, Reddy SM, Talavera C, Montalvo SD, Pincus MR, Gibbon RJ, Moser D (2015a) A terrestrial perspective on using ex situ shocked zircons to date lunar impacts. Geology 43(11):999–1002.  https://doi.org/10.1130/g37059.1 CrossRefGoogle Scholar
  11. Cavosie AJ, Erickson TM, Timms NE (2015b) Nanoscale records of ancient shock deformation: reidite (ZrSiO4) in sandstone at the Ordovician Rock Elm impact crater. Geology 43(4):315–318.  https://doi.org/10.1130/g36489.1 CrossRefGoogle Scholar
  12. Cavosie AJ, Timms NE, Erickson TM, Hagerty JJ, Hörz F (2016a) Transformations to granular zircon revealed: twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater. Geology 44(9):703–706CrossRefGoogle Scholar
  13. Cavosie AJ, Montalvo PE, Timms NE, Reddy SM (2016b) Nanoscale deformation twinning in xenotime, a new shocked mineral, from the Santa Fe impact structure (New Mexico, USA). Geology 44(10):803–806CrossRefGoogle Scholar
  14. Cavosie AJ, Timms NE, Erickson TM, Koeberl C (2018a) New clues from Earth’s most elusive impact crater: evidence of reidite in Australasian tektites from Thailand. Geology 46(3):203–206.  https://doi.org/10.1130/g39711.1 CrossRefGoogle Scholar
  15. Cavosie AJ, Timms NE, Ferrière L, Rochette P (2018b) FRIGN zircon—the only terrestrial mineral diagnostic of high-pressure and high-temperature shock deformation. Geology 46(10):891–894.  https://doi.org/10.1130/G45079.1 CrossRefGoogle Scholar
  16. Chao ECT (1968) Pressure and temperature histories of impact metamorphosed rocks—based on petrographic observations. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Press, Baltimore, pp 135–158Google Scholar
  17. Cho JH, Rollett AD, Oh KH (2005) Determination of a mean orientation in electron backscatter diffraction measurements. Metall Mater Trans A 36(12):3427–3438CrossRefGoogle Scholar
  18. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–57CrossRefGoogle Scholar
  19. Cox MA, Cavosie AJ, Bland PA, Miljković K, Wingate MTD (2018) Microstructural dynamics of central uplifts: Reidite offset by zircon twins at the Woodleigh impact structure, Australia. Geology 46(11):983–986.  https://doi.org/10.1130/g45127.1 CrossRefGoogle Scholar
  20. Crow CA, Moser DE, McKeegan KD (2018) Shock metamorphic history of > 4 Ga Apollo 14 and 15 zircons. Meteor Planet Sci 15:8.  https://doi.org/10.1111/maps.13184 CrossRefGoogle Scholar
  21. Darling JR, Moser DE, Barker IR, Tait KT, Chamberlain KR, Schmitt AK, Hyde BC (2016) Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U-Pb dating of Solar System events. Earth Planet Sci Lett 444:1–12.  https://doi.org/10.1016/j.epsl.2016.03.032 CrossRefGoogle Scholar
  22. Deer WA, Howie RA, Zussman J (1982) Rock-forming minerals: orthosilicates, Volume 1A, 2nd edn. Geological Society of London, LondonGoogle Scholar
  23. Deutsch A, Schärer U (1990) ) Isotope systematics and shock-wave metamorphism: I. U-Pb in zircon, titanite and monazite, shocked experimentally up to 59 GPa. Geochimica et Cosmochimica Acta 54(12):3427–3434CrossRefGoogle Scholar
  24. Erickson TM, Cavosie AJ, Moser DE, Barker IR, Radovan HA (2013) Correlating planar microstructures in shocked zircon from the Vredefort Dome at multiple scales: crystallographic modeling, external and internal imaging, and EBSD structural analysis. Am Miner 98(1):53–65.  https://doi.org/10.2138/am.2013.4165 CrossRefGoogle Scholar
  25. Erickson TM, Pearce MA, Taylor RJM, Timms NE, Clark C, Reddy SM, Buick IS (2015) Deformed monazite yields high-temperature tectonic ages. Geology 43(5):383–386.  https://doi.org/10.1130/g36533.1 CrossRefGoogle Scholar
  26. Erickson TM, Cavosie AJ, Pearce MA, Timms NE, Reddy SM (2016) Empirical constraints on shock features in monazite using shocked zircon inclusions. Geology 44(8):635–638CrossRefGoogle Scholar
  27. Erickson TM, Pearce MA, Reddy SM, Timms NE, Cavosie AJ, Bourdet J, Rickard WDA, Nemchin AA (2017a) Microstructural constraints on the mechanisms of the transformation to reidite in naturally shocked zircon. Contrib Miner Pet 172(1):6CrossRefGoogle Scholar
  28. Erickson TM, Timms NE, Kirkland CL, Tohver E, Cavosie AJ, Pearce MA, Reddy SM (2017b) Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages. Contrib Miner Pet 172(2–3):11.  https://doi.org/10.1007/s00410-017-1328-2 CrossRefGoogle Scholar
  29. Facchinelli A, Bruno E, Chiari G (1979) The structure of bytownite quenched from 1723 K. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 35(1):34–42CrossRefGoogle Scholar
  30. Farnan I, Balan E, Pickard CJ, Mauri F (2003) The effect of radiation damage on local structure in the crystalline fraction of ZrSiO4: investigating the 29Si NMR response to pressure in zircon and reidite. Am Mineral 88(11–12):1663–1667CrossRefGoogle Scholar
  31. Feignon J-G, Ferrière L, Koeberl C (2018) Petrography and shock metamorphism of granitoid samples from the Chicxulub peak-ring IODP-ICDP expedition 364 drill core. In: EGU General Assembly Conference Abstracts, p 20Google Scholar
  32. Ferrière L, Rae ASP, Poelchau M, Koeberl C, the IODP-ICDP Expedition 364 Science Party (2017) Macro- and microscopic evidence of impact metamorphism in rocks from the Chicxulub peak ring IODP-ICDP Expedition 364 drill core. In: 48th Lunar and planetary science conference, vol., The Woodlands, Texas, p 1600Google Scholar
  33. Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172(1–2):131–148CrossRefGoogle Scholar
  34. Grieve R, Therriault A (2000) Vredefort, Sudbury, Chicxulub: three of a kind? Annu Rev Earth Planet Sci 28(1):305–338CrossRefGoogle Scholar
  35. Güldemeister N, Wünnemann K, Durr N, Hiermaier S (2013) Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling. Meteor Planet Sci 48(1):115–133.  https://doi.org/10.1111/j.1945-5100.2012.01430.x CrossRefGoogle Scholar
  36. Gulick SP, Barton PJ, Christeson GL, Morgan JV, McDonald M, Mendoza-Cervantes K, Pearson ZF, Surendra A, Urrutia-Fucugauchi J, Vermeesch PM, Warner MR (2008) Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nat Geosci 1(2):131–135CrossRefGoogle Scholar
  37. Gulick SPS, Christeson GL, Barton PJ, Grieve RAF, Morgan JV, Urrutia-Fucugauchi J (2013) Geophysical characterization of the Chicxulub impact crater. Rev Geophys 51(1):31–52.  https://doi.org/10.1002/rog.20007 CrossRefGoogle Scholar
  38. Gulick S, Morgan J, Mellett CL, Green SL, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Jones H, Kring D, Lofi J, Lowery C, Ocampo-Torres R, Perez-Cruz L, Pickersgill AE, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Smit J, Tikoo S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Yamaguchi K, Xiao L, Zylberman W (2017) Expedition 364 summary. In: Morgan J, Gulick S, Mellett CL, Green SL, Scientists at E (eds) Proceedings of the international ocean discovery program, vol 364. College Station, TX (International Ocean Discovery Program), Texas, pp 1–23Google Scholar
  39. Hayward PJ, Cecchetto EV (1982) Scientific Basis for Nuclear Waste Management. North Holland, AmsterdamGoogle Scholar
  40. Hazen RM, Finger LW (1979) Crystal structure and compressibility of zircon at high pressure. Am Mineral 64:196–201Google Scholar
  41. Hey MH (1982) International Mineralogical Association: commission on new minerals and mineral names. Mineral Mag 46(341):513–514CrossRefGoogle Scholar
  42. Higgins JB, Ribbe PH (1976) The crystal chemistry and space groups of natural and synthetic titanites. Am Miner 61(9–10):878–888Google Scholar
  43. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobsen SB, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19(9):867–871CrossRefGoogle Scholar
  44. Kirkland CL, Fougerouse D, Reddy SM, Hollis J, Saxey DW (2018) Assessing the mechanisms of common Pb incorporation into titanite. Chem Geol 483:558–566.  https://doi.org/10.1016/j.chemgeo.2018.03.026 CrossRefGoogle Scholar
  45. Koeberl C, Reimold WU, Kracher A, Träxler B, Vormaier A, Körner W (1996) Mineralogical, petrological, and geochemical studies of drill core samples from the Manson impact structure, Iowa. Geological Society of America Special Papers 302(166)Google Scholar
  46. Kunz M, Xirouchakis D, Lindsley DH, Hausermann D (1996) High-pressure phase transition in titanite (CaTiOSiO4). Am Miner 81(11–12):1527–1530CrossRefGoogle Scholar
  47. Leroux H, Reimold WU, Koerberl C, Hornemann U, Doukan J-C (1999) Experimental shock deformation in zircon: a transmission electron microscopy study. Earth Planet Sci Lett 169:291–301CrossRefGoogle Scholar
  48. Morgan J, Warner M, Brittan J, Buffler R, Camargo A, Christeson G, Denton P, Hildebrand A, Hobbs R, Macintyre H, Mackenzie G (1997) Size and morphology of the Chicxulub impact crater. Nature 390(6659):472–476CrossRefGoogle Scholar
  49. Morgan JV, Gulick SP, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Collins GS, Coolen MJ, Ferrière L, Gebhardt C (2016) The formation of peak rings in large impact craters. Science 354(6314):878–882CrossRefGoogle Scholar
  50. Morgan J, Gulick S, Mellett CL, Green SL, Expedition364Scientists (2017) Chicxulub: Drilling the K-Pg Impact Crater. Expedition 364 of the mission-specific drilling platform from and to Progresso, Mexico. Site M0077. In: Proceedings of the international ocean discovery program, p 364Google Scholar
  51. Moser DE, Davis WJ, Reddy SM, Flemming RL, Hart RJ (2009) Zircon U-Pb strain chronometry reveals deep impact-triggered flow. Earth Planet Sci Lett 277(1–2):73–79.  https://doi.org/10.1016/j.epsl.2008.09.036 CrossRefGoogle Scholar
  52. Moser DE, Cupelli CL, Barker IR, Flowers RM, Bowman JR, Wooden J, Hart JR (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U-Pb and (U–Th)/He analysis of the Vredefort dome. Can J Earth Sci 48(2):117–139.  https://doi.org/10.1139/e11-011 CrossRefGoogle Scholar
  53. Mügge O (1889) Über durch Druck entstandene Zwillinge von Titanit nach den Kanten [110] und [HO]., 11, 98. Neues Jahrb Miner Geol u Paläontol 11:98–115Google Scholar
  54. Müller WF, Franz G (2004) Unusual deformation microstructures in garnet, titanite and clinozoisite from an eclogite of the Lower Schist Cover, Tauern Window, Austria. Eur J Mineral 16(6):939–944.  https://doi.org/10.1127/0935-1221/2004/0016-0939 CrossRefGoogle Scholar
  55. Nemchin A, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2(2):133–136.  https://doi.org/10.1038/NGEO417 CrossRefGoogle Scholar
  56. O’Neill C, Marchi S, Zhang S, Bottke W (2017) Impact-driven subduction on the Hadean Earth. Nat Geosci 10(10):793–797.  https://doi.org/10.1038/ngeo3029 CrossRefGoogle Scholar
  57. Papapavlou K, Darling JR, Storey CD, Lightfoot PC, Moser DE, Lasalle S (2017) Dating shear zones with plastically deformed titanite: new insights into the orogenic evolution of the Sudbury impact structure (Ontario, Canada). Precambr Res 291:220–235.  https://doi.org/10.1016/j.precamres.2017.01.007 CrossRefGoogle Scholar
  58. Papapavlou K, Darling JR, Moser DE, Barker IR, White LF, Lightfoot PC, Storey CD, Dunlop J (2018) U-Pb isotopic dating of titanite microstructures: potential implications for the chronology and identification of large impact structures. Contrib Miner Pet 173:82.  https://doi.org/10.1007/s00410-018-1511-0 CrossRefGoogle Scholar
  59. Prince E, Donnay G, Martin RF (1973) Neutron diffraction refinement of an ordered orthoclase structure. Am Mineral 58(5–6):500–507Google Scholar
  60. Prior DJ, Boyle AP, Brenker F, Cheadle MC, Day A, Lopez G, Peruzzo L, Potts GJ, Reddy S, Spiess R, Timms NE, Trimby P, Wheeler J, Zetterström L (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Miner 84:1741–1759CrossRefGoogle Scholar
  61. Rae ASP (2018) The kinematics and dynamics of complex crater collapse. Imperial College London, LondonGoogle Scholar
  62. Rae ASP, Morgan JVC, Collins GS, Grieve RAF, Osinski GR, Salge T, Hall B, Ferrière L, Poelchau M, Gulick SPS, the IODP-ICDP Expedition 364 Science Party (2017) Deformation, shock barometry, and porosity within shocked target rocks of the Chicxulub peak ring: results from IODP-ICDP expedition 364. In: 48th lunar and planetary science conference, vol., The Woodlands, Texas, p 1934Google Scholar
  63. Reddy SM, Timms NE, Pantleon W, Trimby P (2007) Quantitative characterization of plastic deformation of zircon and geological implications. Contrib Miner Pet 153(6):625–645.  https://doi.org/10.1007/s00410-006-0174-4 CrossRefGoogle Scholar
  64. Reddy SM, Johnson TE, Fischer S, Rickard WDA, Taylor RJM (2015) Precambrian reidite discovered in shocked zircon from the Stac Fada impactite, Scotland. Geology 43(10):899–902.  https://doi.org/10.1130/g37066.1 CrossRefGoogle Scholar
  65. Renne PR, Deino ALHFJ, Kuiper KF, Mark DF, Mitchell WS, Morgan LE, Mundil R, Smit J (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339(6120):684–687CrossRefGoogle Scholar
  66. Riller U, Poelchau MH, Rae ASP, Schulte FM, Collins GS, Melosh HJ, Grieve RAF, Morgan JV, Gulick SPS, Lofi J, Diaw A, McCall N, Kring DA, Party I-IES (2018) Rock fluidization during peak-ring formation of large impact structures. Nature 562(7728):511–518.  https://doi.org/10.1038/s41586-018-0607-z CrossRefGoogle Scholar
  67. Salje E, Schmidt C, Bismayer U (1993) Structural phase transition in titanite, CaTiSiO5: a Raman spectroscopic study. Phys Chem Miner 19(7):502–506CrossRefGoogle Scholar
  68. Sands DE (1969) Introduction to crystallography. WA Benjamin, New YorkGoogle Scholar
  69. Schmieder M, Kring DA, Lapen TJ, Gulick SPS, Stockli DF, Rasmussen C, Rae ASP, Ferrière L, Poelchau M, Xiao L, Wittmann A (2017) Sphene and TiO2 assemblages in the Chicxulub peak ring: U-Pb systematics and implications for shock pressures, temperatures, and crater cooling. Meteor Planet Sci 52:A308–A308Google Scholar
  70. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218CrossRefGoogle Scholar
  71. Speer JA, Gibbs GV (1976) The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. Am Miner 61(3–4):238–247Google Scholar
  72. Taylor M, Brown GE (1976) High-temperature structural study of the P21/a < – > A2/a phase transition in synthetic titanite, CaTiSiO5. Am Miner 61(5–6):435–447Google Scholar
  73. Thomson OA, Cavosie AJ, Moser DE, Barker I, Radovan HA, French BM (2014) Preservation of detrital shocked minerals derived from the Ga Sudbury impact structure in modern alluvium and Holocene glacial deposits. Geol Soc Am Bull 126(5-6):720–737.  https://doi.org/10.1130/b30958.1 CrossRefGoogle Scholar
  74. Timms NE, Reddy SM, Healy D, Nemchin AA, Grange ML, Pidgeon RT, Hart R (2012) Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map. Meteor Planet Sci 47(1):120–141.  https://doi.org/10.1111/j.1945-5100.2011.01316.x CrossRefGoogle Scholar
  75. Timms NE, Erickson TM, Zanetti M, Pearce MA, Cayron C, Cavosie AJ, Reddy SM, Wittmann A, Carpenter PK (2017a) Cubic zirconia in > 2370°C impact melt records Earth’s hottest crust. Earth Planet Sci Lett 477(1):52–58.  https://doi.org/10.1016/j.epsl.2017.08.012 CrossRefGoogle Scholar
  76. Timms NE, Erickson TM, Pearce MA, Cavosie AJ, Schmieder M, Tohver E, Reddy SM, Zanetti M, Nemchin AA, Wittmann A (2017b) A pressure-temperature phase diagram for zircon at extreme conditions. Earth-Sci Rev 165:185–202.  https://doi.org/10.1016/j.earscirev.2016.12.008 CrossRefGoogle Scholar
  77. Timms NE, Healy D, Erickson TM, Nemchin AA, Pearce MA, Cavosie AJ (2018) Role of elastic anisotropy in the development of deformation microstructures in zircon. In: Moser D, Corfu F, Reddy S, Darling J, Tait K (eds) Microstructural geochronology: planetary records down to atom scale, geophysical monograph, vol 232. AGU-Wiley, Hoboken, pp 183–202Google Scholar
  78. Wechsler BA, Lindsley DH, Prewitt CT (1984) Crystal structure and cation distribution in titanomagnetites (Fe3-x Tix O4). Am Mineral 69(7–8):754–770Google Scholar
  79. Wheeler J, Prior D, Jiang Z, Spiess R, Trimby P (2001) The petrological significance of misorientations between grains. Contrib Miner Pet 141(1):109–124.  https://doi.org/10.1007/s004100000225 CrossRefGoogle Scholar
  80. Wheeler J, Mariani E, Piazolo S, Prior DJ, Trimby P, Drury MR (2009) The weighted Burgers vector: a new quantity for constraining dislocation densities and types using electron backscatter diffraction on 2D sections through crystalline materials. J Microsc 233(3):482–494CrossRefGoogle Scholar
  81. White LF, Darling JR, Moser DE, Cayron C, Barker I, Dunlop J, Tait KT (2018) Baddeleyite as a widespread and sensitive indicator of meteorite bombardment in planetary crusts. Geology 46(8):719–722.  https://doi.org/10.1130/g45008.1 CrossRefGoogle Scholar
  82. Whitney DL, Evans BW (2009) Abbreviations for names of rock-forming minerals. Am Miner 95(1):185–187.  https://doi.org/10.2138/am.2010.3371 CrossRefGoogle Scholar
  83. Wittmann A, Kenkmann T, Schmitt RT, Stöffler D (2006) Shock-metamorphosed zircon in terrestrial impact craters. Meteor Planet Sci 41(3):433–454CrossRefGoogle Scholar
  84. Zhao JW, Xiao L, Liu HS, Xiao ZY, Morgan J, Gulick S, Kring D, Claeys P, Riller U, Wittmann A, Ferriere L (2017) Shock metamorphic effects of the peak ring granites within the Chicxulub Crater. Lunar Planet Sci Conf Proc 48:1421Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nicholas E. Timms
    • 1
    Email author
  • Mark A. Pearce
    • 2
  • Timmons M. Erickson
    • 1
    • 3
  • Aaron J. Cavosie
    • 1
  • Auriol S. P. Rae
    • 4
    • 5
  • John Wheeler
    • 6
  • Axel Wittmann
    • 7
  • Ludovic Ferrière
    • 8
  • Michael H. Poelchau
    • 5
  • Naotaka Tomioka
    • 9
  • Gareth S. Collins
    • 4
  • Sean P. S. Gulick
    • 10
  • Cornelia Rasmussen
    • 10
  • Joanna V. Morgan
    • 4
  • IODP-ICDP Expedition 364 Scientists
  1. 1.The Institute for Geoscience Research (TIGeR), Space Science and Technology Centre, School of Earth and Planetary SciencesCurtin UniversityPerthAustralia
  2. 2.CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonAustralia
  3. 3.Jacobs-JETS, NASA Johnson Space CenterAstromaterials Research and Exploration Science DivisionHoustonUSA
  4. 4.Department of Earth Science and EngineeringImperial College LondonLondonUK
  5. 5.Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität, FreiburgFreiburgGermany
  6. 6.Department of Earth and Ocean SciencesUniversity of LiverpoolLiverpoolUK
  7. 7.Eyring Materials CenterArizona State UniversityTempeUSA
  8. 8.Natural History Museum1010 ViennaAustria
  9. 9.Kochi Institute for Core Sample ResearchJapan Agency for Marine-Earth Science and TechnologyKochiJapan
  10. 10.Institute for Geophysics and Department of Geological Sciences, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA

Personalised recommendations