Skip to main content
Log in

Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The nature (i.e., sub-oceanic, sub-arc or sub-continental) of ophiolitic mantle peridotites from the eastern Neo-Tethyan domain in southern Tibet has been hotly debated. This uncertainty limits our understanding of the history and evolution of the eastern Neo-Tethys Ocean. Here we present petrological, geochemical and Re–Os isotopic data for the mantle peridotites from the Dazhuqu ophiolite in the central segment of the Yarlung Zangbo suture zone, southern Tibet. Samples collected include both spinel lherzolites and spinel harzburgites. The lherzolites have spinel Cr# [Cr/(Cr + Al), ~ 0.3–0.4] comparable to those of typical abyssal peridotites. In contrast, the harzburgites have spinel Cr# (~ 0.3–0.7) overlapping with the ranges of both abyssal and fore-arc peridotites; two samples have spinel Cr# higher than 0.6, which is probably ascribed to intense melt–rock interactions. Clinopyroxene trace element modeling indicates that the Dazhuqu mantle peridotites have experienced 0–6% garnet-facies melting followed by 10–18% melting in the spinel stability field. This is similar to the degree of garnet-facies melting inferred for many abyssal peridotites and implies deep initial melting (> 85 km), which distinguishes the Dazhuqu mantle peridotites from fore-arc peridotites (commonly < 80 km in origin). The Dazhuqu peridotites have unradiogenic 187Os/188Os of 0.11836–0.12922, which are commonly lower than the recommended value of primitive upper mantle (PUM). All but one samples yield relatively younger Re depletion ages (TRD = 0.06–0.81 Ga) with respect to the only one sample having an older TRD age of 1.66 Ga. Re–Os isotopes and highly siderophile element (HSE) compositions of the Dazhuqu peridotites are similar to those of abyssal peridotites and the Oman southern massifs but are distinct from non-cratonic sub-continental lithospheric mantle (SCLM) xenoliths and sub-arc mantle. We emphasize the similarity between the Dazhuqu and Oman ophiolites, both representing Neo-Tethyan oceanic lithosphere and implying ridge–trench collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aitchison JC, Davis AM, Liu JB, Luo H, Malpas JG, McDermid IR, Wu HY, Ziabrev SV, Zhou MF (2000) Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung–Zangbo suture (southern Tibet). Earth Planet Sci Lett183:231–244

    Google Scholar 

  • Alabaster T, Pearce JA, Malpas J (1982) The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib Miner Petrol 82:168–183

    Google Scholar 

  • Alard O, Luguet A, Pearson NJ, Griffin WL, Lorand J-P, Gannoun A, Burton KW, O’Reilly SY (2005) In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nat 436:1005–1008

    Google Scholar 

  • An W, Hu XM, Garzanti E (2017) Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India-Asia collision (Yarlung–Zangbo struture, south Tibet). Gondwana Res 41:222–234

    Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Google Scholar 

  • Bao PS, Su L, Wang J, Zhai QG (2013) Study on the tectonic setting for the ophiolites in xigaze, tibet. Acta Geol Sin 87:395–425

    Google Scholar 

  • Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550

    Google Scholar 

  • Birck JL, Roy-Barman M, Capmas F (1997) Re–Os isotopic measurements at the femtomole level in natural samples. Geostand Newslet J Geostand Geoanal 21:19–27

    Google Scholar 

  • Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85

    Google Scholar 

  • Bizimis M, Griselin M, Lassiter JC, Salters VJM, Sen G (2007) Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–Hafnium isotopic evidence from peridotite mantle xenoliths. Earth Planet Sci Lett 257:259–273

    Google Scholar 

  • Boillot G, Féraud G, Recq M, Girardeau J (1989) Undercrusting by serpentinite beneath rifted margins. Nature 341(6242):523–525

    Google Scholar 

  • Bonatti E (1990) Subcontinental mantle exposed in the Atlantic Ocean on St Peter-Paul islets. Nature 345:800–802

    Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the Island of Zabargad (St. John), Red Sea: petrology and geochemistry. J Geophys Res 91:599–631

    Google Scholar 

  • Brandon AD, Snow JE, Walker RJ, Morgan JW, Mock TD (2000) 190Pt–186Os and 187Re–187Os systematics of abyssal peridotites. Earth Planet Sci Lett 177:319–335

    Google Scholar 

  • Brenan JM, Bennett NR, Zajacz Z (2016) Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. Rev Mineral Geochem 81:1–87

    Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in Four-phase Lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Brunelli D, Seyler M, Cipriani A, Ottolini L, Bonatti E (2006) Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema Lithospheric Section (Mid-Atlantic Ridge). J Petrol 47:745–771

    Google Scholar 

  • Büchl A, Brügmann G, Batanova VG, Münker C, Hofmann AW (2002) Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth Planet Sci Lett 204:385–402

    Google Scholar 

  • Cai FL, Ding L, Leary RJ, Wang HQ, Xu Q, Zhang LY, Yue YH (2012) Tectonostratigraphy and provenance of an accretionary complex within the Yarlung–Zangpo suture zone, southern Tibet: insights into subduction–accretion processes in the Neo-Tethys. Tectonophysics 574–575:181–192

    Google Scholar 

  • Chen JB, Zeng ZG (2007) Metasomatism of the peridotites from southern Mariana fore-arc: Trace element characteristics of clinopyroxene and amphibole. Sci China Ser D Earth Sci 50:1005–1012

    Google Scholar 

  • Chen Y, Huang F, Shi GH, Wu F-Y, Chen X, Jin QZ, Su B, Guo S, Sein K, Nyunt TT (2018) Magnesium isotope composition of subduction zone fluids as constrained by jadeitites from Myanmar. J Geophys Res Solid Earth 123:7566–7585

    Google Scholar 

  • Chu ZY, Wu FY, Walker RJ, Rudnick RL, Pitcher L, Puchtel IS, Yang YH, Wilde SA (2009) Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J Petrol 50:1857–1898

    Google Scholar 

  • Coltorti M, Bonadiman C, O’Reilly SY, Griffin WL, Pearson NJ (2010) Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal Island, Cape Verde Archipelago). Lithos 120:223–233

    Google Scholar 

  • Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninite and related rocks. Unwin Hyman, London, pp 1–49 in

    Google Scholar 

  • Dai JG, Wang CS, Hébert R, Santosh M, Li YL, Xu JY (2011) Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: implications for the early cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chem Geol 288:133–148

    Google Scholar 

  • Dai JG, Wang CS, Polat A, Santosh M, Li YL, Ge YK (2013) Rapid forearc spreading between 130 and 120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos 172–173:1–16

    Google Scholar 

  • Day JMD, Walker RJ, Warren JM (2017) 186Os–187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta 200:232–254

    Google Scholar 

  • Dewey JF, Shackleton RM, Chang CF, Sun YY (1988) The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc Lond Ser A Math Phys Sci 327:379–413

    Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Miner Petrol 86:54–76

    Google Scholar 

  • Dick HJB, Fisher RL, Bryan WD (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett 69:88–106

    Google Scholar 

  • Dick HJB, Lissenberg CJ, Warren JM (2010) Mantle melting, melttransport, and delivery beneath a slow-spreading ridge: the paleo-MAR from 23°15′N to 23°45′N. J Petrol 51:425–467

    Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Google Scholar 

  • Dubois-Côté V, Hébert R, Dupuis C, Wang CS, Li YL, Dostal J (2005) Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chem Geol 214:265–286

    Google Scholar 

  • Dupuis C, Hébert R, Dubois-Côté V, Guilmette C, Wang CS, Li YL, Li ZJ (2005a) The Yarlung Zangbo Suture Zone ophiolitic mélange (southern Tibet): new insights from geochemistry of ultramafic rocks. J Asian Earth Sci 25:937–960

    Google Scholar 

  • Dupuis C, Hébert R, Dubois-Côté V, Wang CS, Li ZJ (2005b) Petrology and geochemistry of mafic rocks from mélange and flysch units adjacent to the Yarlung Zangbo Suture Zone, southern Tibet. Chem Geol 214:287–308

    Google Scholar 

  • Dupuis C, Hébert R, Dubois-Côté V, Guilmette C, Wang CS, Li ZJ (2006) Geochemistry of sedimentary rocks from mélange and flysch units south of the Yarlung Zangbo suture zone, southern Tibet. J Asian Earth Sci 26:489–508

    Google Scholar 

  • Dygert N, Liang Y, Kelemen PB (2016) Formation of plagioclase lherzolite and associated dunite–harzburgite–lherzolite sequences by multiple episodes of melt percolation and melt–rock reaction: an example from the Trinity Ophiolite, California, USA. J Petrol 57:815–838

    Google Scholar 

  • Gass IG (1968) Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220:39–42

    Google Scholar 

  • Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N, Yin A (2011) Detrital zircon geochronology of pre–Tertiary strata in the Tibetan–Himalayan orogen. Tectonics 30:TC5016. https://doi.org/10.1029/2011TC002868

    Article  Google Scholar 

  • Girardeau J, Mercier JCC, Cao YG (1985a) Origin of the xigaze ophiolite, yarlung zangbo suture zone, southern tibet. Tectonophysics 119:407–433

    Google Scholar 

  • Girardeau J, Mercier JCC, Wang XB (1985b) Petrology of the mafic rocks of the Xigaze ophiolite, Tibet: implications for the genesis of the oceanic lithosphere. Contrib Miner Petrol 90:309–321

    Google Scholar 

  • Gong XH, Shi RD, Griffin WL, Huang QS, Xiong Q, Chen SS, Zhang M, O’Reilly SY (2016) Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet). Lithos 262:11–26

    Google Scholar 

  • Griffin WL, Powell WJ, Pearson NJ, O’Reilly SY (2008) GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester P (ed) Laser Ablation-ICP-MS in the earth sciences: current practices and outstanding issues, Mineralogical Association of Canada Short Course Series, vol 40, pp 307–311

  • Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, González-Jiménez JM, Howell D, Huang JX, McGowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, Xiong Q, Yang JS, Zhang M, O’Reilly SY (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57:655–684

    Google Scholar 

  • Hanghøj K, Kelemen PB, Hassler D, Godard M (2010) Composition and genesis of depleted mantle peridotites from the waditayin massif, oman ophiolite; major and trace element geochemistry, and Os isotope and PGE systematics. J Petrol 51:201–227

    Google Scholar 

  • Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244:606–621

    Google Scholar 

  • Hébert R, Bezard R, Guilmette C, Dostal J, Wang CS, Liu ZF (2012) The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res 22:377–397

    Google Scholar 

  • Hellebrand E, Snow JE (2003) Deep melting and sodic metasomatism underneath the highly oblique-spreading Lena Trough (Arctic Ocean). Earth Planetary Science Letters 216:283–299

    Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43:2305–2338

    Google Scholar 

  • Horan MF, Walker RJ, Morgan JW, Grossman JN, Rubin AE (2003) Highly siderophile elements in chondrites. Chem Geol 196:5–20

    Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Google Scholar 

  • Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1–18

    Google Scholar 

  • Kelemen PB, Dick HJB (1995) Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. J Geophys Res Solid Earth 100(B1):423–438

    Google Scholar 

  • Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgites by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641

    Google Scholar 

  • Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753

    Google Scholar 

  • Kepezhinskas P, Defant MJ (2001) Nonchondritic Pt/Pd ratios in arc mantle xenoliths: Evidence for platinum enrichment in depleted island-arc mantle sources. Geol 29:851–854

    Google Scholar 

  • Lassiter JC, Byerly BL, Snow JE, Hellebrand E (2014) Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle. Earth Planet Sci Lett 403:178–187

    Google Scholar 

  • Liu CZ, Snow JE, Hellebrand E, Brugmann G, von der Handt A, Büchl A, Hofmann AW (2008) Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452:311–316

    Google Scholar 

  • Liu CZ, Wu FY, Chu ZY, Ji WQ, Yu LJ, Li JL (2012) Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. J Asian Earth Sci 53:38–50

    Google Scholar 

  • Liu T, Wu FY, Zhang LL, Zhai QG, Liu CZ, Ji WB, Zhang C, Xu Y (2016) Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet. Chem Geol 443:67–86

    Google Scholar 

  • Lorand J-P, Gros M, Pattou L (1999) Fractionation of platinum-group element in the upper mantle: a detailed study in Pyrenean orogenic peridotites. J Petrol 40:951–987

    Google Scholar 

  • Lorand J-P, Alard O, Godard M (2009) Platinum-group element signature of the primitive mantle rejuvenated by melt-rock reactions: evidence from Sumail peridotites (Oman Ophiolite). Terra Nova 21:35–40

    Google Scholar 

  • Luguet A, Reisberg L (2016) Highly siderophile element and 187Os signatures in non-cratonic basalt-hosted peridotite xenoliths: Unravelling the origin and evolution of the Post-Archean lithospheric mantle. Rev Mineral Geochem 81:305–367

    Google Scholar 

  • Luguet A, Lorand J-P, Seyler M (2003) Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: A coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK Area, Atlantic Ocean). Geochim Cosmochim Acta 67:1553–1570

    Google Scholar 

  • Luguet A, Lorand J-P, Alard O, Cottin J-Y (2004) A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem Geol 208:175–194

    Google Scholar 

  • Malpas J, Zhou MF, Robinson PT, Reynolds PH (2003) Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. Geol Soc Lond Speicial Publ 218:191–206

    Google Scholar 

  • McCarthy A, Müntener O (2015) Ancient depletion and mantle heterogeneity: Revisiting the Permian–Jurassic paradox of Alpine peridotites. Geology 43:255–258

    Google Scholar 

  • McInnes BIA, McBride JS, Evans NJ, Lambert DD, Andrew AS (1999) Osmium isotope constraints on ore Metal recycling in subduction zones. Science 286:512–516

    Google Scholar 

  • Meisel T, Moser J (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem Geol 208:319–338

    Google Scholar 

  • Meisel T, Walker RJ, Irving AJ, Lorand JP (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Acta 65:1311–1323

    Google Scholar 

  • Metcalfe I (2006) Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Res 9:24–46

    Google Scholar 

  • Miyashiro A (1973) The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224

    Google Scholar 

  • Moores EM, Vine FJ (1971) The Troodos Massif, Cyprus and other ophiolites as oceanic crust: evolution and implications. Philos Trans R Soc Lond Ser A Math Phys Sci 268:443–466

    Google Scholar 

  • Morgan JW (1986) Ultramafic xenoliths: clues to the Earth’s late accretionary history. J Geophys Res Atmos 91:12375–12387

    Google Scholar 

  • Müntener O, Manatschal G (2006) High degrees of melt extraction recorded by spinel harzburgite of the newfoundland margin: the role of inheritance and consequences for the evolution of the southern North Atlantic. Earth Planet Sci Lett 252:437–452

    Google Scholar 

  • Müntener O, Manatschal G, Desmurs L, Pettke T (2010) Plagioclase peridotites in ocean–continent transitions: refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51:255–294

    Google Scholar 

  • Nicolas A, Boudier F (2017) Emplacement of Semail–Emirates ophiolite at ridge–trench collision. Terra Nova 29:127–134

    Google Scholar 

  • Nicolas A, Girardeau J, Marcoux J, Dupre B, Wang XB, Cao YG, Zheng HX, Xiao XC (1981) The xigaze ophiolite (Tibet): a peculiar oceanic lithosphere. Nature 294:414–417

    Google Scholar 

  • Niu YL (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Google Scholar 

  • Niu YL (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458

    Google Scholar 

  • Niu XL, Yang JS, Dilek Y, Xu JF, Li J, Chen SY, Feng GY, Liu F, Xiong FH, Liu Z (2015) Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet. J Asian Earth Sci 110:72–84

    Google Scholar 

  • O’Reilly SY, Zhang M, Griffin WL, Begg G, Hronsky J (2009) Ultradeep continental roots and their oceanic remnants: a solution to the geochemical “mantle reservoir”. problem? Lithos 211S:1043–1054

    Google Scholar 

  • Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD (2012) Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci 53:3–14

    Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a suprasubduction zone setting. J Petrol 39:1577–1618

    Google Scholar 

  • Pearce JA, Robinson PT (2010) The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res 18:60–81

    Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ 16:77–94

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM610 and NIST SRM 612 glass reference materials. Geostand Newslett 20:247–261

    Google Scholar 

  • Pearce JA, Baker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Miner Petrol 139:36–53

    Google Scholar 

  • Pearson DG, Irvine GJ, Ionov DA, Boyd FR, Dreibus GE (2004) Re–Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208:29–59

    Google Scholar 

  • Rampone E, Hofmann AW (2012) A global overview of isotopic heterogeneities in the oceanic mantle. Lithos 148:247–261

    Google Scholar 

  • Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1995) Petrology, mineral and isotope geochemistry of the external liguride peridotites (Northern Apennines, Italy). J Petrol 36:81–105

    Google Scholar 

  • Rampone E, Hofmann AW, Raczek I (1998) Isotopic contrasts within the Internal Liguride ophiolite (N Italy): the lack of a genetic mantle–crust link. Earth Planet Sci Lett 163:175–189

    Google Scholar 

  • Rampone E, Piccarod G, Hofmann AW (2008) Multi-stage melt-rock interaction in the Mt Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contrib Miner Petrol 156:453–475

    Google Scholar 

  • Reisberg L, Lorand JP (1995) Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376:159–162

    Google Scholar 

  • Robinson JAC, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164(1–2):277–284

    Google Scholar 

  • Rudnick RL, Walker RJ (2009) Interpreting ages from Re–Os isotopes in peridotites. Lithos 112S:1083–1095

    Google Scholar 

  • Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Li TD, Xiao XC, Jan MQ, Thakur VC, Kumar S (1987) The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull 98:678–701

    Google Scholar 

  • Sengor AMC, Natalin BA (1996) Paleotectonics of Asia: fragments of a synthesis. In: Yin A, Harrison M (eds) The Tectonics of Asia. Cambridge University Press, New York, pp 486–640 in

    Google Scholar 

  • Seyler M, Lorand J-P, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20′N: ODP Hole 1274. Contrib Miner Petrol 153:303–319

    Google Scholar 

  • Shirey SB, Walker RJ (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26:423–500

    Google Scholar 

  • Snow JE, Reisberg L (1995) Os isotopic systematics of the MORB mantle: results from altered abyssal peridotites. Earth Planet Sci Lett 136:723–733

    Google Scholar 

  • Snow JE, Schmidt G (1999) Proterozoic melting in the northern peridotite Massif, Zabargad Island: Os isotopic evidence. Terra Nova 11:45–50

    Google Scholar 

  • Snow JE, Schmidt G, Rampone E (2000) Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolites, Italy. Earth Planet Sci Lett 175:119–132

    Google Scholar 

  • Stracke A, Snow JE, Hellebrand E, von der Handt A, Bourdon B, Birdaum K, Günther D (2011) Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet Sci Lett 308:359–368

    Google Scholar 

  • Sun SS, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Tribuzio R, Thirlwall MF, Vannucci R (2004) Origin of the gabbro-peridotite association from the Northern Apennine Ophiolites (Italy). J Petrol 45:1109–1124

    Google Scholar 

  • van Acken D, Becker H, Walker RJ (2008) Refertilization of Jurassic oceanic peridotites from the Tethys Ocean—implications for the Re–Os systematics of the upper mantle. Earth Planet Sci Lett 268:171–181

    Google Scholar 

  • van Acken D, Becker H, Hammerschmidt K, Walker RJ, Wombacher F (2010) Highly siderophile elements and Sr–Nd isotopes in refertilized mantle peridotites—a case study from the Totalp ultramafic body, Swiss Alps. Chem Geol 276:257–268

    Google Scholar 

  • Walker RJ, McDonough WF, Honesto J, Chabot NL, McCoy TJ, Ash RD, Bellucci JJ (2008) Modeling fractional crystallization of group IVB iron meteorites. Geochim Cosmochim Acta 72:2198–2216

    Google Scholar 

  • Wang XB, Bao PS, Deng WM, Wang FG (1987) Xizang (Tibet) Ophiolites. Geological Publishing House, Beijing. (In Chinese)

    Google Scholar 

  • Wang JG, Hu XM, Garzanti E, An W, Liu XC (2017) The birth of the Xigaze forearc basin in southern Tibet. Earth Planet Sci Lett 465:38–47

    Google Scholar 

  • Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248–251:193–219

    Google Scholar 

  • Warren JM, Shimizu N, Sakaguchi C, Dick HJB, Nakamura E (2009) An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J Geophys Res Solid Earth 114:B12203. https://doi.org/10.1029/2008JB006186

    Article  Google Scholar 

  • Whattam SA, Stern RJ (2011) The “subduction initiation rule”: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib Miner Petrol 162:1031–1045

    Google Scholar 

  • Wilson JT (1968) Static or mobile earth: the current scientific revolution. Proc Am Philos Soc 112:309–320

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Google Scholar 

  • Wu FY, Huang BC, Ye K, Fang AM (2008) Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau. Acta Petrol Sinica 24:1–30 (In Chinese with English abstract)

    Google Scholar 

  • Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ, Liu XC (2014) Yarlung zangbo ophiolite: a critical updated view. Acta Petrol Sinica 30:293–325 (In Chinese with English abstract)

    Google Scholar 

  • Xia B, Yu HX, Chen GW, Qi L, Zhao TP, Zhou MF (2003) Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet. Geochem J 37:311–324

    Google Scholar 

  • Xiong Q, Griffin WL, Zheng JP, O’Reilly SY, Pearson NJ, Xu B, Belousova EA (2016) Southward trench migration at ~ 130–120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth Planet Sci Lett 438:57–65

    Google Scholar 

  • Xiong FH, Yang JS, Robinson PT, Gao J, Chen YH, Lai SM (2017) Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet: Implications for a suprasubduction zone origin. J Asian Earth Sci 146:56–75

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Google Scholar 

  • Zhang C, Liu CZ, Wu FY, Ji WB, Liu T, Xu Y (2017) Ultra-refractory mantle domains in the Luqu ophiolite (Tibet): petrology and tectonic setting. Lithos 286–287:252–263

    Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L (2005) REE and PGE geochemical constraints on the formation of dunites in the luobusa ophiolite, Southern Tibet. J Petrol 46:615–639

    Google Scholar 

  • Zhu DC, Zhao ZD, Niu Y, Dilek Y, Hou ZQ, Mo XX (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454

    Google Scholar 

  • Ziabrev SV, Aitchison JC, Abrajevitch AV, Badengzhu Davis AM, Luo H (2003) Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung–Tsangpo suture zone, Tibet. J Geol Soc Lond 160:591–599

    Google Scholar 

  • Ziabrev SV, Aitchison JC, Abrajevitch AV, Badengzhu Davis AM, Luo H (2004) Bainang Terrane, Yarlung–Tsangpo struture, southern Tibet (Xizang, China): a record of intra-Neotethyan subduction–accretion processes preserved on the roof of the world. J Geol Soc Lond 161:523–538

    Google Scholar 

Download references

Acknowledgements

We thank Hong-Yue Wang, Ding-Shuai Xue and Yan-Hong Liu for their help in whole-rock major element analysis, Di Zhang for assistance with EPMA, and Yue-Heng Yang and Zhu-Yin Chu for help in mineral trace element, Re-Os isotope and HSE content analyses. We are grateful to Editor in Chief Othmar Müntener for editorial handling and helpful comments and to David van Acken and an anonymous reviewer for constructive comments and suggestions. Comments from Laurie Reisberg also improved the quality of an early version of the manuscript. This study was financially supported by the National Natural Science Foundation of China (grants 41673038, 41521062), the Key Research Program of Frontier Sciences from CAS (QYZDB-SSW-DQC032) and the Open Fund Project of State Key Laboratory of Lithospheric Evolution (201707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Liu.

Additional information

Communicated by Othmar Müntener.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wu, FY., Liu, CZ. et al. Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet. Contrib Mineral Petrol 174, 23 (2019). https://doi.org/10.1007/s00410-019-1557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1557-7

Keywords

Navigation