Skip to main content
Log in

Ti K-edge XANES study on the coordination number and oxidation state of Titanium in pyroxene, olivine, armalcolite, ilmenite, and silicate glass during mare basalt petrogenesis

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Lunar mare basalts are a product of partial melting of the lunar mantle under more reducing conditions when compared to those expected for the Earth’s upper mantle. Alongside Fe, Ti can be a major redox sensitive element in lunar magmas, and it can be enriched by up to a factor of ten in lunar basaltic glasses when compared to their terrestrial counterparts. Therefore, to better constrain the oxidation state of Ti and its coordination chemistry during lunar magmatic processes, we report new X-ray absorption near edge structure (XANES) spectroscopy measurements for a wide range of minerals (pyroxene, olivine, Fe–Ti oxides) and basaltic melt compositions involved in partial melting of the lunar mantle. Experiments were conducted in 1 bar gas-mixing furnaces at temperatures between 1100 and 1300 °C and oxygen fugacities (fO2) that ranged from air to two orders of magnitude below the Fe–FeO redox equilibrium. Run products were analysed via electron microprobe and XANES Ti K-edge. Typical run products had large (> 100 µm) crystals in equilibrium with quenched silicate glass. Ti K-edge XANES spectra show a clear shift in energy of the absorption edge features from oxidizing to reducing conditions and yield an average valence for Fe–Ti oxides (armalcolite and ilmenite) of 3.6, i.e., a 40% of the overall Ti is Ti3+ under fO2 conditions relevant to lunar magmatism (IW − 1.5 to − 1.8). Pyroxenes and olivine have average Ti valence of 3.75 (i.e., 25% of the overall Ti is trivalent), while in silicate glasses Ti is exclusively tetravalent. Pre-edge peak intensities also indicate that the coordination number of Ti varies from an average V-fold in silicate glass to VI-fold in the Fe–Ti oxides and a mixture between IV and VI-fold coordination in the pyroxenes and olivine, with up to 82% [IV]Ti4+ in the pyroxene. In addition, our results can help to better constrain the Ti3+/∑Ti of the lunar mantle phases during magmatic processes and are applied to provide first insights into the mechanisms that may control Ti mass-dependent equilibrium isotope fractionation in lunar mare basalts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerson MR, Tailby ND, Watson EB (2017) XAFS spectroscopic study of Ti coordination in garnet. Am Miner 102:173–183

    Article  Google Scholar 

  • Aldermann OLG, Wilding MC, Tamalonis A, Sendelbach S, Heald SM, Benmore CJ, Johnson CE, Johnson JA, Hah HY, Weber JKR (2017) Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses. Chem Geol 453:169–185

    Article  Google Scholar 

  • Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Miner Petrol 114:331–348

    Article  Google Scholar 

  • Beard BL, Taylor LA, Scherer EE, Johnson CM, Snyder GA (1998) The source region and melting mineralogy of high-titanium and low-titanium lunar basalts deduced from Lu–Hf isotope data. Geochim Cosmochim Acta 62:525–544

    Article  Google Scholar 

  • Berry AJ, O’Neill HSTC (2004) A XANES determination of the oxidation state of chromium in silicate glasses. Am Miner 89:790–798

    Article  Google Scholar 

  • Berry AJ, O’Neill HSTC, Jayasuryia KD, Campbell SJ, Foran GJ (2003) XANES calibrations for the oxidation state of iron in a silicate glass. Am Miner 88:967–977

    Article  Google Scholar 

  • Berry AJ, Walker AM, Hermann J, O’Neill HSTC, Foran GJ, Gale JD (2007) Titanium substitution mechanisms in forsterite. Chem Geol 242:176–186

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics 15:262–267

    Article  Google Scholar 

  • Borisov AA (2012) The Ti4+/Ti3+ ratio of magmatic melts: application to the problem of the reduction of lunar basalts. Petrology 20:391–398

    Article  Google Scholar 

  • Borisov AA, Brenker F, Palme H (2004) Liquidus karrooite stability and composition at reducing conditions. Contrib Miner Petrol 148:69–78

    Article  Google Scholar 

  • Borisov A, Behrens H, Holtz F (2013) The effect of titanium and phosphorous on ferric/ ferrous ratio in silicate melts: an experimental study. Contrib Miner Petrol 166:1577–1591

    Article  Google Scholar 

  • Brophy JG, Basu A (1990) Europium anomalies in mare basalts as a consequence of mafic cumulate fractionation from an initial lunar magma ocean. In: Proceedings of the 20th lunar and planetary science conference, pp 25–30

  • Calas G, Petiau J (1983) Coordination of iron in oxides glasses through high-resolution K-edge spectra: information from the pre-edge. Solid State Commun 48:625–629

    Article  Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochem 43:1–81

    Article  Google Scholar 

  • Connolly HC Jr, Burnett DS (2003) On type B CAI formation: experimental constraints on fO2 variations in spinel minor element partitioning and reequilibration effects. Geochim Cosmochim Acta 67:4429–4434

    Article  Google Scholar 

  • Dauphas N, Roskosz M, Alp EE, Newville DR, Hu MY, Sio CK, Tissot FLH, Zhao J, Tissandier L, Médard E, Cordier C (2014) Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet Sci Lett 398:127–140

    Article  Google Scholar 

  • DesMarais DJ, Hayes JM, Meinschein WG (1972) Pyrolysis study of carbon in lunar fines and rocks. In: The Apollo 15 lunar samples. Lunar Science Institute, Houston, pp 294–297

    Google Scholar 

  • Donaldson CH, Williams RJ, Logfren GE (1975) A sample holding technique for study of crystal growth in silicate melts. Am Miner 60:324–326

    Google Scholar 

  • Dowty E, Clark JR (1973) Crystal structure refinement and optical properties of a Ti3+ fassaite from the Allende meteorite. Am Mineral 58:230–242

    Google Scholar 

  • Dyl KA, Simon JI, Young ED (2011) Valence state of titanium in the Wark-Lovering rim of a Leoville CAI as a record of progressive oxidation in the early Solar Nebula. Geochim Cosmochim Acta 75(3):937–949

    Article  Google Scholar 

  • El Goresy A, Ramdohr P, Taylor LA (1972) Fra Mauro crystalline rocks: mineralogy, geochemistry, and subsolidus reduction of the opaque minerals. In: Proceedings of the 3rd lunar science conference, p 33

  • Farges F, Brown GE Jr, Rehr JJ (1996) Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochim Cosmochim Acta 60:3023–3038

    Article  Google Scholar 

  • Farges F, Brown GE Jr (1997) Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure. Geochim Cosmochim Acta 61:1863–1870

    Article  Google Scholar 

  • Farges F, Brown GE Jr, Rehr JJ (1997) Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experiment. Phys Rev B 56:1809–1819

    Article  Google Scholar 

  • Farges F, Wilke M (2015) Planetary, geological and environmental sciences. In: van Bokhoven JA, Lamberti C (eds) XAS and XES: theory and applications, vol II. Wiley, Oxford, pp 561–608

    Google Scholar 

  • Fonseca ROC, Mallmann G, Sprung P, Sommer JC, Heuser A, Speelmanns IM, Blanchard H (2014) Redox controls on tungsten and uranium crystal/silicate melt partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth Planet Sci Lett 404:1–13

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of the Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  • Gonze X, Jollet F, Abreu Araujo F, Adams D, Amadon B, Applencourt T, Audouze C, Beuken J-M, Bieder J, Bokhanchuk A, Bousquet E, Bruneval F, Caliste D, Côté M, Dahm F, Da Pieve F, Delaveau M, Di Gennaro M, Dorado B, Espejo C, Geneste G, Genovese L, Gerossier A, Giantomassi M, Gillet Y, Hamann DR, He L, Jomard G, Laflamme Janssen J, Le Roux S, Levitt A, Lherbier A, Liu F, Lukačević I, Martin A, Martins C, Oliveira MJT, Poncé S, Pouillon Y, Rangel T, Rignanese G-M, Romero AH, Rousseau B, Rubel O, Shukri AA, Stankovski M, Torrent M, Van Setten MJ, Van Troeye B, Verstraete MJ, Waroquiers D, Wiktor J, Xu B, Zhou A, Zwanziger (2016) Recent developments in the ABINIT software package. JW Comput Phys Commun 205:106–131

    Article  Google Scholar 

  • Grossmann L, Beckett JR, Fedkin AV, Simon SB, Ciesla FB (2008) Redox conditions in the solar nebula: observational, experimental, and theoretical constraints. Rev Mineral Geochem 68:93–140

    Article  Google Scholar 

  • Grunes LA (1983) Study of the K edges of 3d transition metals in pure and oxide form by x-ray-absorption spectroscopy. Phys Rev B 27:2111

    Article  Google Scholar 

  • Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215

    Article  Google Scholar 

  • Joly Y, Grenier S (2016) Theory of X-ray absorption near edge structure. In: van Bokhoven JA, Lamberti C (eds) X-ray absorption and X-Ray emission spectroscopy: theory and applications. Wiley, Oxford, pp 73–95

    Google Scholar 

  • Karner J, Papike JJ, Shearer CK (2003) Olivine from planetary basalts: chemical signatures that indicate planetary parentage and those that record igneous setting and process. Am Miner 88:806–816

    Article  Google Scholar 

  • Karner JM, Sutton SR, Papike JJ, Shearer CK, Jones HH, Newville M (2006) Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon and Mars. Am Miner 91:270–277

    Article  Google Scholar 

  • Kesson SE, Lindsley DH (1975) The effects of Al3+, Cr3+, and Ti3+ on the stability of armalcolite. In: Proc. Lunar Sci. Conf. 4th, pp 911–920

  • Kowalski PM, Wunder B, Jahn S (2013) Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochim Cosmochim Acta 101:285–301

    Article  Google Scholar 

  • Krawczynski MJ, Sutton, Grove TL, Newville M (2009) Titanium oxidation state and coordination in the lunar high-titanium glass source mantle. In: Proceedings of the 40th lunar and planetary science conference, n. 2164

  • Krawczynski MJ, Sutton SR, Barr JA, Grove TL (2010) Titanium valence in lunar ultramafic glasses and olivine-diogenites. In: Proceedings of the 41st lunar and planetary science conference, n. 1825

  • Kress V, Ghiorso M, Lastuka C (2004) Microsoft EXCEL spreadsheet-based program for calculating equilibrium gas speciation in the COHS-Cl-F system. Comput Geosci 30(3):211–214

    Article  Google Scholar 

  • Leitzke FP, Fonseca ROC, Michely LT, Sprung P, Münker C, Heuser A, Blanchard H (2016) The effect of titanium on the partitioning behavior of high-field strength elements between silicates, oxides and lunar basaltic melts with applications to the origin of mare basalts. Chem Geol 440:219–238

    Article  Google Scholar 

  • Lombard P, Boizet B, Ollier N, Jouin A, Yoshikawa A (2009) Spectroscopic studies of Ti3+ ions speciation inside MgAl2O4 spinels. J Cryst Growth 311:899–903

    Article  Google Scholar 

  • Longhi J (1987) Liquidus equilibria and solid solution in the system CaAl2Si2O8–Mg2SiO4–CaSiO3–SiO2 at low pressure. Am J Sci 287:265–331

    Article  Google Scholar 

  • Ma C, Rossman GR (2009a) Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. Am Miner 94:841–844

    Article  Google Scholar 

  • Ma C, Rossman GR (2009b) Grossmanite, CaTi3+AlSiO6, a new pyroxene from the Allende meteorite. Am Miner 94:1491–1494

    Article  Google Scholar 

  • Mallmann G, O'Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794

    Article  Google Scholar 

  • Mallmann G, Wykes J, Berry A, O’Neill HSTC, Cline CJ, Turner S, Rushmer TA (2016) In situ XANES of U and Th in silicate liquids at high pressure and temperature. In: American geophysical union, fall general assembly 2016, abstract id. MR13A-2418

  • Marvin UB, Walker D (1978) Implications of a titanium-rich glass clod at Oceanus Procellarum. Am Miner 63:924–929

    Google Scholar 

  • Meyer C (2012) Lunar sample compendium. http://curator.jsc.nasa.gov/lunar/compendium.cfm. Accessed 15 Dec 2017

  • Millet MA, Dauphas N (2014) Ultra-precise titanium stable isotope measurements by double-spike high resolution MC-ICP-MS. J Anal At Spectrom (29):1444–1458

    Article  Google Scholar 

  • Millet MA, Dauphas N, Greber ND, Burton KW, Dale CW, Debret B, Macpherson CG, Nowell GM, Williams HM (2016) Titanium stable isotope investigation of magmatic processes on the Earth and Moon. Earth Planet Sci Lett 449:197–205

    Article  Google Scholar 

  • Mollo S, Blundy JD, Iezzi G, Scarlato P, Langone A (2013) The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth. Contrib Miner Petrol 166:1633–1654

    Article  Google Scholar 

  • Moore CB, Lewis CF, Cripe J, Delles FM, Kelley WR (1972) Total carbon, nitrogen, and sulfur in Apollo 14 lunar samples. Proc Third Lunar Sci Conf Geochim et Cosmochim Acta 2(Suppl. 3):2059–2068

    Google Scholar 

  • Myers J, Eugster HP (1983) The system Fe–Si–O: oxygen buffer calibrations to 1500 K. Contrib. Mineral Pet 82:75–90

    Article  Google Scholar 

  • Nazzareni S, Moli G, Skogby H, Dal Negro A (2004) Crystal chemistry of Ti3+–Ti4+ bearing synthetic diopsides. Eur J Mineral 16:443–449

    Article  Google Scholar 

  • Ni H, Keppler H (2013) Carbon in silicate melts. Rev Mineral Geochem 75:251–287

    Article  Google Scholar 

  • Nicholis M, Rutherford MJ (2009) Graphite oxidation in the Apollo 17 orange glass 797 magma: implications for the generation of a lunar volcanic gas phase. Geochim Cosmochim Acta 73(19):5905–5917

    Article  Google Scholar 

  • O’Hara MJ, Niu Y (2015) Obvious problems in lunar petrogenesis and new perspectives. Geol Soc Am Spec Pap 514:339–366

    Google Scholar 

  • O’Neill HSTC, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181

    Article  Google Scholar 

  • O’Neill HSC, Berry AJ, Eggins SM (2008) The solubility and oxidation state of tungsten in silicate melts: implications for the comparative chemistry of W and Mo in planetary differentiation processes. Chem Geol 255:346–359

    Article  Google Scholar 

  • Papike JJ, Parker JM, Shearer CK (2005) Comparative planetary mineralogy: valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. Am Miner 90:277–290

    Article  Google Scholar 

  • Papike JJ, Simon SB, Burger PV, Bell AS, Shearer CK, Karner JM (2016) Chromium, vanadium, and titanium valence systematics in Solar System pyroxene as a recorder of oxygen fugacity, planetary provenance, and processes. Am Mineral 101:907–918

    Article  Google Scholar 

  • Pavicevic M, Ramdohr P, Goresy E, A (1972) Electron microprobe investigations of the oxidation states of Fe and Ti in ilmenite in Apollo 11, Apollo 12, and Apollo 14 crystalline rocks. In: Proceedings of the third lunar science conference, pp 295–303

  • Prewitt TC, Shannon RD, White WB (1972) Synthesis of a pyroxene containing trivalent titanium. Contrib Miner Petrol 35:77–82

    Article  Google Scholar 

  • Quartieri S, Antonioli G, Artioli G, Lottici PP (1993) XANES study of titanium coordination in natural diopsidic pyroxenes. Eur J Mineral 5:1101–1109

    Article  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  Google Scholar 

  • Righter K, Sutton S, Danielson L, Pando K, Schmidt G, Yang H, Berthet S, Newville M, Choi Y, Downs RT, Malavergne V (2011) The effect of fO2 on the partitioning and valence of V and Cr in garnet/melt pairs and the relation to terrestrial mantle V and Cr content. Am Miner 96:1278–1290

    Article  Google Scholar 

  • Righter K, Danielson LR, Pando KM, Shofner GA, Sutton SR, Newville M, Lee CT (2016) Valence and metal/silicate partitioning of Mo: implications for conditions of Earth accretion and core formation. Earth Planet Sci Lett 437:89–100

    Article  Google Scholar 

  • Ringwood AE, Kesson SE (1976) A dynamic model for mare basalt petrogenesis. Proc 7th Lunar Planet Sci Conf 7:1697–1722

    Google Scholar 

  • Rushmer T, Dixon NA, Clark SM (2015) High pressure, down under: the first Australian high-pressure synchrotron facility for geoscience research. Aust J Earth Sci 62:181–188

    Article  Google Scholar 

  • Sato M (1976) Oxygen fugacity and other thermochemical parameters of Apollo 17 high-Ti basalts and their implications on the reduction mechanism. In: Proceedings of the 7th lunar science conference, pp 1323–1344

  • Sato M, Hickling NL, McLane JE (1973) Oxygen fugacity values of Apollo 12, 14 and 15 lunar samples and reduced state of lunar magmas. In: Proceedings of the Fourth Lunar Science Conference, Supplement 4, Geochimica et Cosmochimica Acta, vol 1, pp 1061–1079

  • Schauble EA, Mheut M, Hill PS (2009) Combining metal stable isotope fractionation theory with experiments. Elements 5:369–374

    Article  Google Scholar 

  • Schreiber HD (1986) Redox processes in glass-forming melts. J Non Cryst Solids 84:129–141

    Article  Google Scholar 

  • Schreiber HD, Balasz GB (1982) Vanadium as an oxygen geobarometer in basaltic magmas: the further development of a geochemical electromotive force series in silicate melts. In: Lunar and Planetary Science Conference, XIII, pp 692–693

  • Sepp B, Kunzmann T (2001) The stability of clinopyroxene in the system CaO-MgO-SiO2-TiO2 (CMST). Am Mineral 86:265–270

    Article  Google Scholar 

  • Simon SB, Sutton SR (2017) Valence of Ti, V, and Cr in Apollo 14 aluminous basalts 14053 and 14072. Meteorit Planet Sci 52:2051–2066

    Article  Google Scholar 

  • Simon SB, Sutton SR (2018) Valences of Ti, Cr, and V in Apollo 17 high-Ti and very low-Ti basalts and implications for their formation. Meteorit Planet Sci. https://doi.org/10.1111/maps.13123

    Article  Google Scholar 

  • Simon SB, Sutton SR, Grossmann L (2007) Valence of titanium and vanadium in pyroxene in refractory inclusion interiors and rims. Geochim Cosmochim Acta 71:3098–3118

    Article  Google Scholar 

  • Simon SB, Sutton SR, Grossmann L (2014) Valence of Ti in lunar igneous rocks: the first direct measurements. In: Proceedings of the 45th lunar and planetary science conference, p 1063

  • Simon SB, Sutton SR, Grossmann L (2016) The valence and coordination of titanium in ordinary and enstatite chondrites. Geochim Cosmochim Acta 189:377–390

    Article  Google Scholar 

  • Simons B, Woermann E (1978) Iron Titanium oxides in equilibrium with metallic iron. Contrib Miner Petrol 66:81–89

    Article  Google Scholar 

  • Stanin FT, Taylor L (1980) Armalcolite—an oxygen fugacity indicator. In: Lunar and planetary science conference, 11th, Houston TX, March 17–21, 1980, proceedings (A82-22251 09–91), vol 1. Pergamon, New York, pp 117–124

    Google Scholar 

  • Sung CM, Abu-Eid RM, Burns RG (1974) A search for trivalent titanium in Apollo 17 pyroxenes. In: Proceedings V lunar and planetary science conference, pp 758–760

  • Sutton SR, Jones KW, Gordon B, Rivers ML, Bajt S, Smith JV (1993) Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochim Cosmochim Acta 57:461–468

    Article  Google Scholar 

  • Sutton SR, Goodrich CA, Wirick S (2017) Titanium, vanadium and chromium valences in silicates of ungrouped achondrite NWA 7325 and ureilite Y-791538 record highly-reduced origins. Geochim Cosmochim Acta 204:313–330

    Article  Google Scholar 

  • Taylor LA, Patachen A, Mayne RG, Taylor DH (2004) The most reduced rock from the moon, Apollo 14 basalt 14053: its unique features and their origin. Am Miner 89:1617–1624

    Article  Google Scholar 

  • Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562–581

    Article  Google Scholar 

  • Warren PH, Taylor GJ (2014) The moon. In: Treatise on geochemistry, 2nd edn, Elsevier, pp 213–250

  • Waychunas GA (1987) Synchrotron radiation XANES spectroscopy of Ti in minerals: effects of Ti bonding distances, Ti valence, and site geometry on absorption edge structure. Am Miner 72:89–101

    Google Scholar 

  • Wechsler BA, Prewitt CT, Papike JJ (1975) Structure and chemistry of lunar and synthetic armalcolite. Lunar Sci VI:860–862

    Google Scholar 

  • Wilke M, Partzsch GM, Welter E, Farges F (2007) Redox reaction in silicate melts monitored by “static” in-situ Fe K-edge XANES up to 1180 °C. AIP Conf Proc 882:293. https://doi.org/10.1063/1.2644505

    Article  Google Scholar 

  • Wong J, Lytle FW, Messmer RP, Maylotte DH (1984) K-edge absorption spectra of selected vanadium compounds. Phys Rev B 30:5596–5609

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Jahn S (2011) Li-isotope fractionation between silicates and fluids: pressure dependence and influence of the bonding environment. Eur J Mineral 23:333–342

    Article  Google Scholar 

  • Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A (2012) The proto-Earth as a significant source of lunar material. Nat Geosci 5:251–255

    Article  Google Scholar 

Download references

Acknowledgements

We thank all colleagues at the University of Bonn and University of Cologne, and at the ANKA Synchrotron facility in the Karlsruhe Institute of Technology, especially D. Lülsdorf, T. Schulz, N. Jung and H. Blanchard for the technical support. We are also grateful to C. Ballhaus and S. Aulbach for discussion of the results, as well as S. Sutton for valuable insights into the Ti valence determination. Editor J. Hoefs and the anonymous referees are acknowledge for their constructive input. F.P.L. was supported by a PhD. scholarship from the Brazilian National Council for Scientific and Technological Development (DAAD/CNPq-grant 248562/2013-4). R.F. acknowledges research funding from the Deutsche Forschungsgemeinschaft (DFG—Grants FO 698/5 and FO 698/6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Leitzke.

Additional information

Communicated by Jochen Hoefs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitzke, F.P., Fonseca, R.O.C., Göttlicher, J. et al. Ti K-edge XANES study on the coordination number and oxidation state of Titanium in pyroxene, olivine, armalcolite, ilmenite, and silicate glass during mare basalt petrogenesis. Contrib Mineral Petrol 173, 103 (2018). https://doi.org/10.1007/s00410-018-1533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1533-7

Keywords

Navigation