Skip to main content
Log in

Textural evolution of perovskite in the Afrikanda alkaline–ultramafic complex, Kola Peninsula, Russia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Perovskite is a common accessory mineral in a variety of mafic and ultramafic rocks, but perovskite deposits are rare and studies of perovskite ore deposits are correspondingly scarce. Perovskite is a key rock-forming mineral and reaches exceptionally high concentrations in olivinites, diverse clinopyroxenites and silicocarbonatites in the Afrikanda alkaline–ultramafic complex (Kola Peninsula, NW Russia). Across these lithologies, we classify perovskite into three types (T1–T3) based on crystal morphology, inclusion abundance, composition, and zonation. Perovskite in olivinites and some clinopyroxenites is represented by fine-grained, equigranular, monomineralic clusters and networks (T1). In contrast, perovskite in other clinopyroxenites and some silicocarbonatites has fine- to coarse-grained interlocked (T2) and massive (T3) textures. Electron backscatter diffraction reveals that some T1 and T2 perovskite grains in the olivinites and clinopyroxenites are composed of multiple subgrains and may represent stages of crystal rotation, coalescence and amalgamation. We propose that in the olivinites and clinopyroxenites, these processes result in the transformation of clusters and networks of fine-grained perovskite crystals (T1) to mosaics of more coarse-grained (T2) and massive perovskite (T3). This interpretation suggests that sub-solidus processes can lead to the development of coarse-grained and massive perovskite. A combination of characteristic features identified in the Afrikanda perovskite (equigranular crystal mosaics, interlocked irregular-shaped grains, and massive zones) is observed in other oxide ore deposits, particularly in layered intrusions of chromitites and intrusion-hosted magnetite deposits and suggests that the same amalgamation processes may be responsible for some of the coarse-grained and massive textures observed in oxide deposits worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afanasyev BV (2011) Mineral resources of the alkaline–ultramafic massifs of the Kola Peninsula. Roza Vetrov, St. Petersburg, p 224 (in Russian)

    Google Scholar 

  • Armbrustmacher TJ (1981) The Complex of Alkaline Rocks at Iron Hill, Powderhorn district, Gunnison County, Colorado. New Mexico Geological Society, New Mexico

    Google Scholar 

  • Arzamastsev A, Wu F-Y (2014) U–Pb geochronology and Sr-Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola province. Petrology 22:462–479

    Google Scholar 

  • Arzamastsev A, Glaznev V, Raevsky A, Arzamastseva L (2000) Morphology and internal structure of the Kola Alkaline intrusions, NE Fennoscandian shield: 3D density modelling and geological implications. J Asian Earth Sci 18:213–228

    Google Scholar 

  • Barbosa ESR, Brod JA, Junqueira-Brod TC, Dantas EL, de Oliveira Cordeiro PF, Gomide CS (2012) Bebedourite from its type area (Salitre I complex): a key petrogenetic series in the Late-Cretaceous Alto Paranaíba Kamafugite–Carbonatite–Phoscorite association. Cent Br Lithos 144:56–72

    Google Scholar 

  • Borrok DM, Kelser SE, Boer RH, Essene EJ (1998) The Vergenoeg magnetite-fluorite deposit, South Africa; support for a hydrothermal model for massive iron oxide deposits. Econ Geol 93:564–586

    Google Scholar 

  • Brod JA (1999) Petrology and geochemistry of the Tapira alkaline complex, Minas Gerais State, Brazil. Durham University, Durham

    Google Scholar 

  • Buddington A, Lindsley D (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Google Scholar 

  • Campbell LS, Henderson P, Wall F, Nielsen TF (1997) Rare earth chemistry of perovskite group minerals from the Gardiner complex. East Greenl Mineral Mag 61:197–212

    Google Scholar 

  • Cawthorn R (2011) Geological interpretations from the PGE distribution in the Bushveld Merensky and UG2 chromitite reefs. J S Afr Inst Min Metall 111:67–79

    Google Scholar 

  • Chakhmouradian AR (2004) Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia. Am Mineral 89:1752–1762

    Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1997) Compositional variation of perovskite-group minerals from the carbonatite complexes of the Kola Alkaline Province, Russia. Can Mineral 35:1293–1310

    Google Scholar 

  • Chakhmouradian AR, Mitchell RH (2000) Occurrence, alteration patterns and compositional variation of perovskite in kimberlites. Can Mineral 38:975–994

    Google Scholar 

  • Chakhmouradian AR, Mitchell RH (2002) New data on pyrochlore-and perovskite-group minerals from the Lovozero alkaline complex, Russia. Eur J Mineral 14:821–836

    Google Scholar 

  • Chakhmouradian A, Williams C (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. Phoscorites Carbon Mantle Mine Key Example Kola Alkaline Province 10:293–340

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (1999) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. I Oxide minerals. Can Mineral 37:177–198

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2002) Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. III Silicate minerals. Can Mineral 40:1347–1374

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2004) Afrikanda: an association of ultramafic, alkaline and alkali-silica-rich carbonatitic rocks from mantle-derived melts Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineral Soc UK Ser 10:247–291

    Google Scholar 

  • Chakhmouradian A, Mitchell R, Pankov A, Chukanov N (1999) Loparite and ‘metaloparite’ from the Burpala alkaline complex, Baikal Alkaline Province (Russia). Mineral Mag 63:519–519

    Google Scholar 

  • Chakhmouradian AR, Cooper MA, Medici L, Hawthorne FC, Adar F (2008) Fluorine-rich hibschite from silicocarbonatite, Afrikanda complex, Russia: crystal chemistry and conditions of crystallization. Can Mineral 46:1033–1042

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Kamenetsky VS, Sharygin VV, Golovin AV (2013) Trace-element partitioning in perovskite: implications for the geochemistry of kimberlites and other mantle-derived undersaturated. Rocks Chem Geol 353:112–131

    Google Scholar 

  • Chakhmouradian AR et al (2017) Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274:188–213

    Google Scholar 

  • Chakrabarty A, Mitchell R, Ren M, Saha P, Pal S, Pruseth K, Sen A (2016) Magmatic, hydrothermal and subsolidus evolution of the agpaitic nepheline syenites of the Sushina Hill Complex, India: implications for the metamorphism of peralkaline syenites. Mineral Mag 80:1161–1193

    Google Scholar 

  • Charlier B, Duchesne J-C, Vander Auwera J (2006) Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti ores in massif-type anorthosites. Chem Geol 234:264–290

    Google Scholar 

  • Christiansen F (1985) Deformation fabric and microstructures in ophiolitic chromitites and host ultramafics, Sultanate of Oman. Geologische Rundschau 74:61–76

    Google Scholar 

  • Christiansen FG (1986) Deformation of chromite: SEM investigations. Tectonophysics 121:175–196

    Google Scholar 

  • Clark BR, Price FR, Kelly WC (1977) Effects of annealing on deformation textures in galena. Contrib Miner Petrol 64:149–165

    Google Scholar 

  • Dawson J, Hawthorn J (1973) Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. J Geol Soc 129:61–85

    Google Scholar 

  • Dill HG (2010) The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Sci Rev 100:1–420

    Google Scholar 

  • Doherty R et al (1997) Current issues in recrystallization: a review. Mater Sci Eng A 238:219–274

    Google Scholar 

  • Dowty E (1976a) Crystal structure and crystal growth: I. The influence of internal structure on morphology. Am Miner 61:448–459

    Google Scholar 

  • Dowty E (1976b) Crystal structure and crystal growth: II. Sect Zon Miner Am Mineral 61:460–469

    Google Scholar 

  • Eales H, Costin G (2012) Crustally contaminated komatiite: primary source of the chromitites and Marginal, Lower, and Critical Zone magmas in a staging chamber beneath the Bushveld. Complex Econ Geol 107:645–665

    Google Scholar 

  • Eales H, De Klerk W, Teigler B (1990) Evidence for magma mixing processes within the Critical and Lower Zones of the northwestern Bushveld Complex. S Afr Chem Geol 88:261–278

    Google Scholar 

  • Fleet M, Bilcox GA, Barnett RL (1980) Oriented magnetite inclusions in pyroxenes from the Grenville Province. Can Mineral 18:89–99

    Google Scholar 

  • Force ER (1991) Geology of titanium-mineral deposits, vol 259. Geological Society of America, New York

    Google Scholar 

  • Gaeta M (1996) Ca–Fe-rich exsolution lamellae from olivine in a wehrlitic xenolith, Monti Vulsini Volcanic District, Central Italy. Mineral Petrol Acta 39:159–167

    Google Scholar 

  • Garrison JR, Taylor LA (1981) Petrogenesis of pyroxene-oxide intergrowths from kimberlite and cumulate rocks; co-precipitation or exsolution? Am Miner 66:723–740

    Google Scholar 

  • Ghisler M (1970) Pre-metamorphic folded chromite deposits of stratiform type in the early Precambrian of West, Greenland. Mineral Depos 5:223–236

    Google Scholar 

  • Ghisler M (1976) The geology, mineralogy and geochemistry of the-Pre-Orogenic Archaean stratiform chromite deposits at-Fiskenaesset, West Greenland

  • Haggerty SE (1991) Oxide textures; a mini-atlas. Rev Mineral Geochem 25:129–219

    Google Scholar 

  • Harlov DE, Meighan CJ, Kerr ID, Samson IM (2016) Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe oxide-(Y + REE) deposit, southeast Missouri, USA. Econ Geol 111:1963–1984

    Google Scholar 

  • Herz N (1976) Titanium deposits in alkalic igneous rocks. US Department of the Interior, Geological Survey, New York

    Google Scholar 

  • Higgins MD (2011) Textural coarsening in igneous rocks. Int Geol Rev 53:354–376

    Google Scholar 

  • Higgins MD (2015) Quantitative textural analysis of rocks in layered mafic intrusions. In: Layered Intrusions. Springer, pp 153–181

  • Higgins MD (2017) Quantitative investigation of felsic rock textures using cathodoluminescence images and other techniques. Lithos 277:259–268

    Google Scholar 

  • Holm E, Farjami S, Manohar P, Rohrer G, Rollett A, Srolovitz D, Weiland H (2016) Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016). Springer

  • Holness MB, Cheadle MJ, McKenzie D (2005) On the use of changes in dihedral angle to decode late-stage textural evolution in cumulates. J Petrol 46:1565–1583

    Google Scholar 

  • Holness MB, Nielsen TF, Tegner C (2006) Textural maturity of cumulates: a record of chamber filling, liquidus assemblage, cooling rate and large-scale convection in mafic layered intrusions. J Petrol 48:141–157

    Google Scholar 

  • Horstwood MS et al (2016) Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology–uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40:311–332

    Google Scholar 

  • Hou B, Keeling J, Van Gosen BS (2017) Geological and exploration models of beach placer deposits, integrated from case-studies of Southern Australia. Ore Geol Rev 80:437–459

    Google Scholar 

  • Howarth GH, Prevec SA, Zhou M-F (2013) Timing of Ti-magnetite crystallisation and silicate disequilibrium in the Panzhihua mafic layered intrusion: Implications for ore-forming processes. Lithos 170:73–89

    Google Scholar 

  • Humphreys F (2001) Review grain and subgrain characterisation by electron backscatter diffraction. J Mater Sci 36:3833–3854

    Google Scholar 

  • Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Amsterdam

    Google Scholar 

  • Hunter RH (1987) Textural equilibrium in layered igneous rocks. In: Origins of igneous layering. Springer, pp 473–503

  • Irvine T (1977) Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology 5:273–277

    Google Scholar 

  • Jones A, Ralph B, Hansen N (1979) Subgrain coalescence and the nucleation of recrystallization at grain boundaries in aluminium. Proc R Soc Lond 368:345–357

    Google Scholar 

  • Jurewicz AJ, Watson EB (1988) Cations in olivine, Part 1: Calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with petrologic applications. Contrib Mineral Petrol 99:176–185

    Google Scholar 

  • Kamenetsky VS, Mitchell RH, Maas R, Giuliani A, Gaboury D, Zhitova L (2015) Chlorine in mantle-derived carbonatite melts revealed by halite in the St.-Honoré intrusion (Québec, Canada). Geology 43:687–690

    Google Scholar 

  • Kinnaird J, Kruger F, Nex P, Cawthorn R (2002) Chromitite formation—a key to understanding processes of platinum enrichment. Appl Earth Sci 111:23–35

    Google Scholar 

  • Knipping JL et al (2015) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Google Scholar 

  • Kolker A (1982) Mineralogy and geochemistry of Fe–Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Econ Geol 77:1146–1158

    Google Scholar 

  • Kramm U, Kogarko L, Kononova V, Vartiainen H (1993) The Kola Alkaline province of the CIS and Finland: Precise Rb-Sr ages define 380–360 Ma age range for all magmatism. Lithos 30:33–44

    Google Scholar 

  • Kreitcberg A, Brailovski V, Turenne S (2017) Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion. Mater Sci Eng A 689:1–10

    Google Scholar 

  • Kretz R (1966) Interpretation of the shape of mineral grains in metamorphic rocks. J Petrol 7:68–94

    Google Scholar 

  • Kukharenko AA et al (1965) The Caledonian complex of ultrabasic and alkaline rocks and carbonatites of the Kola Peninsula and Northern Karelia. Nedra, Leningrad

    Google Scholar 

  • Latypov R, O’Driscoll B, Lavrenchuk A (2013) Towards a model for the in situ origin of PGE reefs in layered intrusions: insights from chromitite seams of the Rum Eastern Layered Intrusion, Scotland. Contrib Mineral Petrol 166:309–327

    Google Scholar 

  • Latypov R, Chistyakova S, Mukherjee R (2017) A novel hypothesis for origin of massive Chromitites in the bushveld igneous complex. J Petrol 1:41

    Google Scholar 

  • Leblanc M, Dautria J-M, Girod M (1982) Magnesian ilmenitite xenoliths in a basanite from Tahalra, Ahaggar (Southern Algeria). Contrib Miner Petrol 79:347–354

    Google Scholar 

  • Li JC (1962) Possibility of subgrain rotation during recrystallization. J Appl Phys 33:2958–2965

    Google Scholar 

  • Lister GF (1966) The composition and origin of selected iron-titanium deposits. Econ Geol 61:275–310

    Google Scholar 

  • Markl G, Marks M, Wirth R (2001) The influence of T, aSiO2, and fO2 on exsolution textures in Fe–Mg olivine: an example from augite syenites of the Ilimaussaq Intrusion, South Greenland. Am Mineral 86:36–46

    Google Scholar 

  • McCloy J, Korenstein R, Zelinski B (2009) Effects of temperature, pressure, and metal promoter on the recrystallized structure and optical transmission of chemical vapor deposited zinc sulfide. J Am Ceram Soc 92:1725–1731

    Google Scholar 

  • McDonald JA (1965) Liquid immiscibility as one factor in chromitite seam formation in the Bushveld Igneous complex. Econ Geol 60:1674–1685

    Google Scholar 

  • McKay G, Miyamoto M, Mikouchi T, Ogawa T (1998) The cooling history of the Lewis Cliff 86010 angrite as inferred from kirschsteinite lamellae in olivine. Meteorit Planet Sci 33:977–983

    Google Scholar 

  • Mikouchi T, Takeda H, Miyamoto M, Ohsumi K, McKay GA (1995) Exsolution lamellae of kirschsteinite in magnesium-iron olivine from an angrite meteorite. Am Mineral 80:585–592

    Google Scholar 

  • Mitchell RH (1973) Magnesian ilmenite and its role in kimberlite petrogenesis. J Geol 81:301–311

    Google Scholar 

  • Mitchell RH, Welch MD, Chakhmouradian AR (2017) Nomenclature of the perovskite supergroup: a hierarchical system of classification based on crystal structure and composition. Mineral Mag 81:411–462

    Google Scholar 

  • Mondal SK, Mathez EA (2006) Origin of the UG2 chromitite layer Bushveld Complex. J Petrol 48:495–510

    Google Scholar 

  • Mungall J (2014) Geochemistry of magmatic ore deposits. In: Treatise on geohemistry, vol 13. 2 edn, pp 195–218

    Google Scholar 

  • Nielsen T (1980) The petrology of a melilitolite, melteigite, carbonatite and syenite ring dike system, in the Gardiner complex, East Greenland Lithos 13:181–197

    Google Scholar 

  • Nielsen TFD, Solovova IP, Veksler IV (1997) Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallised melt inclusions Gardiner complex. Contrib Mineral Petrol 126:331–344

    Google Scholar 

  • Pang K-N, Zhou M-F, Lindsley D, Zhao D, Malpas J (2007) Origin of Fe–Ti oxide ores in mafic intrusions: evidence from the Panzhihua intrusion SW China. J Petrol 49:295–313

    Google Scholar 

  • Pekov I, Petersen OV, Voloshin A (1997) Calcio-ancylite-(Ce) from Ilímaussaq and Narssârssuk, Greenland, Kola Peninsula and Polar Urals, Russia, ancylite-(Ce)-calcio-ancylite-(Ce) an isomorphous series. Neues Jahrbuch für Minerologie, Abhandlungen 171(3):309–322

    Google Scholar 

  • Pike JN, Schwarzman E (1977) Classification of textures in ultramafic xenoliths. J Geol 85:49–61

    Google Scholar 

  • Price G (1980) Exsolution microstructures in titanomagnetites and their magnetic significance. Phys Earth Planet Int 23:2–12

    Google Scholar 

  • Pushkarev E, Kamenetsky V, Morozova A, Khiller V, Glavatskykh S, Rodemann T (2015) Ontogeny of ore Cr-spinel and composition of inclusions as indicators of the pneumatolytic–hydrothermal origin of PGM-bearing chromitites from Kondyor massif, the Aldan Shield. Geol Ore Deposit 57:352–380

    Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124

    Google Scholar 

  • Ramdohr P (2013) The ore minerals and their intergrowths. Elsevier, Amsterdam

    Google Scholar 

  • Reguir EP, Camacho A, Yang P, Chakhmouradian AR, Kamenetsky VS, Halden NM (2010) Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS. Miner Petrol 100:95–103

    Google Scholar 

  • Rios PR, Siciliano F Jr, Sandim HRZ, Plaut RL, Padilha AF (2005) Nucleation and growth during recrystallization. Mater Res 8:225–238

    Google Scholar 

  • Salnikova E, Stifeeva M, Chakhmouradian A, Glebovitsky V, Reguir E (2018) The U–Pb system in schorlomite from calcite–amphobole–pyroxene Pegmatite of the Afrikanda Complex (Kola Peninsula). Dokl Earth Sci 478:148–151

    Google Scholar 

  • Sampson E (1932) Magmatic chromite deposits in southern Africa. Econ Geol 27:113–144

    Google Scholar 

  • Sandström R, Lehtinen B, Hedman E, Groza I, Karlsson S (1978) Subgrain growth in Al and Al-1% Mn during annealing. J Mater Sci 13:1229–1242

    Google Scholar 

  • Simkin T, Smith J (1970) Minor-element distribution in olivine. J Geol 78:304–325

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Google Scholar 

  • Syrenko A, Klinishev G (1973) Recrystallization of copper under hydrostatic pressure up to 15 kbar. J Mater Sci 8:765–769

    Google Scholar 

  • Ulbrich MN (1993) Mineralogy of nepheline syenites from the Poços de Caldas alkaline massif SE Brazil: chemistry, X-ray data and microtextures of feldspars. Revista Brasileira de Geociências 23:388–399

    Google Scholar 

  • Varma S, Willits BL (1984) Subgrain growth in aluminum during static annealing. Metal Trans A 15:1502–1503

    Google Scholar 

  • Vernon R (1970) Comparative grain-boundary studies of some basic and ultrabasic granulites, nodules and cumulates Scottish. J Geol 6:337–351

    Google Scholar 

  • Vidyashankar H, Govindaiah S (2009) Ore petrology of the V-Ti magnetite (lodestone) layers of the Kurihundi area of Sargur schist belt, Dharwar craton. J Geol Soc India 74:58–68

    Google Scholar 

  • Von Gruenewaldt G, Klemm D, Henckel J, Dehm R (1985) Exsolution features in titanomagnetites from massive magnetite layers and their host rocks of the Upper Zone, Eastern Bushveld Complex. Econ Geol 80:1049–1061

    Google Scholar 

  • Vukmanovic Z, Barnes SJ, Reddy SM, Godel B, Fiorentini ML (2013) Morphology and microstructure of chromite crystals in chromitites from the Merensky Reef (Bushveld Complex, South Africa). Contrib Miner Petrol 165:1031–1050

    Google Scholar 

  • Walter J, Koch E (1963) Substructures and recrystallization of deformed (100)[001]-oriented crystals of high-purity silicon-iron. Acta Metall 11:923–938

    Google Scholar 

  • Wandji P, Tsafack J, Bardintzeff J, Nkouathio D, Dongmo AK, Bellon H, Guillou H (2009) Xenoliths of dunites, wehrlites and clinopyroxenites in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): petrogenetic implications. Miner Petrol 96:81–98

    Google Scholar 

  • Wu F-Y, Yang Y-H, Mitchell RH, Bellatreccia F, Li Q-L, Zhao Z-F (2010) In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. Chem Geol 277:178–195

    Google Scholar 

  • Wu F-Y, Arzamastsev AA, Mitchell RH, Li Q-L, Sun J, Yang Y-H, Wang R-C (2013) Emplacement age and Sr–Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia. Chem Geol 353:210–229

    Google Scholar 

  • Xiong F, Yang J, Dilek Y, Wang C (2017) Nanoscale diopside and spinel exsolution in olivine from dunite of the tethyan ophiolites, Southwestern Turkey: implications for the multi-stage process. J Nanosci Nanotechnol 17:6587–6596

    Google Scholar 

  • Yudin B, Zak S (1971) Titanium deposits of northwestern USSR (eastern part of Baltic Shield). Int Geol Rev 13:864–872

    Google Scholar 

  • Yudovskaya MA, Kinnaird JA (2010) Chromite in the Platreef (Bushveld Complex, South Africa): occurrence and evolution of its chemical composition. Miner Depos 45:369–391

    Google Scholar 

  • Yufeng R, Fangyuan C, Jingsui Y, Yuanhong G (2008) Exsolutions of diopside and magnetite in olivine from mantle dunite, Luobusa ophiolite, Tibet, China. Acta Geol Sin English Ed 82:377–384

    Google Scholar 

  • Zaitsev AN, Chakhmouradian AR (2002) Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. II Oxysalt minerals. Can Mineral 40:103–120

    Google Scholar 

  • Zhou M-F, Robinson PT, Lesher CM, Keays RR, Zhang C-J, Malpas J (2005) Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China. J Petrol 46:2253–2280

    Google Scholar 

Download references

Acknowledgements

We thank the Geological Institute (the Kola Science Center of the Russian Academy of Sciences) in Apatity for donating Afrikanda samples for our study. We are grateful to Peter Downes and an anonymous reviewer, for their constructive comments and suggestions. Editorial handling by Ramya Murali is acknowledged. Financial support was provided by the Australian Research Council (Discovery Grant DP130100257, 2013–2015) and University of Tasmania (New Star Professorship, 2010–2014) to V. Kamenetsky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi J. Potter.

Additional information

Communicated by Gordon Moore.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potter, N.J., Ferguson, M.R.M., Kamenetsky, V.S. et al. Textural evolution of perovskite in the Afrikanda alkaline–ultramafic complex, Kola Peninsula, Russia. Contrib Mineral Petrol 173, 100 (2018). https://doi.org/10.1007/s00410-018-1531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1531-9

Keywords

Navigation