Skip to main content

Deep pre-eruptive storage of silicic magmas feeding Plinian and dome-forming eruptions of central and northern Dominica (Lesser Antilles) inferred from volatile contents of melt inclusions

Abstract

Volatiles contribute to magma ascent through the sub-volcanic plumbing system. Here, we investigate melt inclusion compositions in terms of major and trace elements, as well as volatiles (H2O, CO2, SO2, F, Cl, Br, S) for Quaternary Plinian and dome-forming dacite and andesite eruptions in the central and the northern part of Dominica (Lesser Antilles arc). Melt inclusions, hosted in orthopyroxene, clinopyroxene and plagioclase are consistently rhyolitic. Post-entrapment crystallisation effects are limited, and negligible in orthopyroxene-hosted inclusions. Melt inclusions are among the most water-rich yet recorded (≤ 8 wt% H2O). CO2 contents are generally low (< 650 ppm), although in general the highest pressure melt inclusion contain the highest CO2. Some low-pressure (< 3 kbars) inclusions have elevated CO2 (up to 1100–1150 ppm), suggestive of fluxing of shallow magmas with CO2-rich fluids. CO2-trace element systematics indicate that melts were volatile-saturated at the time of entrapment and can be used for volatile-saturation barometry. The calculated pressure range (0.8–7.5 kbars) indicates that magmas originate from a vertically-extensive (3–27 km depth) storage zone within the crust that may extend to the sub-Dominica Moho (28 km). The vertically-extensive crustal system is consistent with mush models for sub-volcanic arc crust wherein mantle-derived mafic magmas undergo differentiation over a range of crustal depths. The other volatile range of composition for melt inclusions from the central part is F (75–557 ppm), Cl (1525–3137 ppm), Br (6.1–15.4 ppm) and SO2 (< 140 ppm), and for the northern part it’s F (92–798 ppm), Cl (1506–4428 ppm), Br (not determined) and SO2 (< 569; one value at 1015 ppm). All MIs, regardless of provenance, describe the same Cl/F correlation (8.3 ± 2.7), indicating that the magma source at depth is similar. The high H2O content of Dominica magmas has implications for hazard assessment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Mineral 101(11):2377–2404. https://doi.org/10.2138/am-2016-5675

    Article  Google Scholar 

  • Balcone-Boissard H, Villemant B, Boudon G (2010) Behavior of halogens during the degassing of felsic magmas. Geochem Geophys Geosyst 11:Q09005. https://doi.org/10.1029/2010GC003028

    Article  Google Scholar 

  • Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69:179–239

    Article  Google Scholar 

  • Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443(7-107):76–80. https://doi.org/10.1038/nature05100

    Article  Google Scholar 

  • Blundy J, Cashman KV, Berlo K (2008) Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980–1986 and current (2004–2006) eruptions. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, vol 1750. US Geological Survey Professional Paper, Denver, pp 755–790

    Google Scholar 

  • Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290(3–4):289–301. https://doi.org/10.1016/j.epsl.2009.12.013

    Article  Google Scholar 

  • Boudon G, Le Friant A, Komorowski J-C, Deplus D, Semet MP (2007) Volcano flank instability in the Lesser Antilles Arc: diversity of scale, processes, and temporal recurrence. J Geophys Res 112:B08205. https://doi.org/10.1029/2006JB004674

    Article  Google Scholar 

  • Boudon G, Balcone-Boissard H, Solaro C, Martel C (2017) A revised chronostratigraphy of recurrent large pumiceous eruptions in Dominica (Lesser Antilles Arc): implications on the behavior of the magma plumbing sytem. J Volcanol Geotherm Res 343:135–154. https://doi.org/10.1016/j.jvolgeores.2017.06.022

    Article  Google Scholar 

  • Bouysse P, Westercamp D (1990) Subduction of Atlantic aseismic ridges and Late Cenozoic evolution of the Lesser Antilles island arc. Tectonophysics 175:349–380. https://doi.org/10.1016/0040-1951(90)90180-G

    Article  Google Scholar 

  • Caricchi L, Sheldrake TE, Blundy J (2018) Modulation of magmatic processes by CO2 flushing. Earth Planet Sci Lett 491:160–171

    Article  Google Scholar 

  • Carroll MR, Rutherford MJ (1987) Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur X-rays. Am Mineral 73:845–849

    Google Scholar 

  • Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:1280. https://doi.org/10.1126/0.1126/science.aag3055

    Article  Google Scholar 

  • Christopher TE, Blundy J, Cashman K, Cole P, Edmonds M, Smith P, Sparks RSJ, Stinton A (2015) Crustal-scale degassing due to magma system destabilisation and magma-gas decoupling at Soufrière Hills Volcano, Montserrat. Geochem Geophys Geosyst 16:2797–2811

    Article  Google Scholar 

  • Cooper GF, Davidson JP, Blundy JD (2016) Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust. Contrib Miner Petrol 171:87

    Article  Google Scholar 

  • Edmonds M, Kohn SC, Hauri EH, Humphreys MCS, Cassidy M (2016) Extensive, water-rich magma reservoir beneath southern Montserrat. Lithos 252–253:216–233. https://doi.org/10.1016/j.lithos.2016.02.026

    Article  Google Scholar 

  • Esposito R, Hunter J, Schiffbauer JD, Shimizu N, Bodnar RJ (2014) An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas. Am Mineral 99:976–998

    Article  Google Scholar 

  • Fichaut M, Maury RC, Traineau H, Westercamp D, Joron J-L, Gourgaud A, Coulon C (1989) Magmatology of Mt Pelée (Martinique FWI). III: fractional crystallisation versus magma mixing. J Volcanol Geotherm Res 38:189–213

    Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308(9):957–1039

    Article  Google Scholar 

  • Ghiorso MS, Gualda GAR (2015) An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-015-1141-8

    Article  Google Scholar 

  • Gourgaud A, Fichaut M, Joron JL (1989) Magmatology of Mt. Pelée (Martinique FWI). I: Magma mixing and triggering of 1902 and 1929 nuées ardentes. J Volcanol Geotherm Res 38:143–169

    Article  Google Scholar 

  • Gurenko AA, Trumbull RB, Thomas R, Lindsay JM (2005) A melt inclusion record of volatiles, trace elements and Li-B isotope variations in a single magma system from the Plat Pays Volcanic Complex, Dominica, Lesser Antilles. J Pet 46:2495–2526

    Article  Google Scholar 

  • Halama R, Boudon G, Villemant B, Joron J-L, Le Friant A, Komorowski J-C (2006) Pre-eruptive crystallization conditions of mafic and silicic magmas at the Plat Pays volcanic Complex, Dominica (Lesser Antilles). J Volcanol Geotherm Res 151:200–220

    Article  Google Scholar 

  • Howe TM, Lindsay JM, Shane P, Schmitt AK, Stockli DF (2014) Re-evaluation of the Roseau Tuff eruptive sequence and other Ignimbrites in Dominica, Lesser Antilles. J Quat Sci 29(6):531–546. https://doi.org/10.1002/jqs.2723

    Article  Google Scholar 

  • Howe TM, Lindsay JM, Shane P (2015) Evolution of young andesitic-dacitic magmatic systems beneath Dominica, Lesser Antilles. J Volcanol Geotherm Res 297:69–88. https://doi.org/10.1016/j.jvolgeores.2015.02.009

    Article  Google Scholar 

  • Kilgour G, Blundy J, Cashman K, Mader HM (2013) Small volume andesite magmas and melt-mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contrib Mineral Petrol 1:1–22

    Google Scholar 

  • Kilgour G, Saunders K, Blundy J, Cashman K, Scott B, Miller C, Mader H (2014) Timescales of magmatic processes at Ruapehu volcano from diffusion chronometry and their comparison to monitoring data. J Volcanol Geotherm Res 1:1–14

    Google Scholar 

  • Kilinc IA, Burnham CW (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kbars. Econ Geol 67:231–235

    Article  Google Scholar 

  • Kopp H, Weinzierl W, Becel A, Charvis P, Evain M, Flueh ER, Gailler A, Galve A, Hirn A, Kandilarov A, Klaeschen D, Laigle M, Papenberg C, Planert L, Roux E (2011) Deep structure of the central Lesser Antilles Island Arc: relevance for the formation of continental crust. Earth Planet Sci Lett 304(1–2):121–134. https://doi.org/10.1016/j.epsl.2011.01.024

    Article  Google Scholar 

  • Labanieh S, Chauvel C, Germa A, Quidelleur X (2012) Martinique: a clear case for sediment melting and slab dehydration as a function of distance to the trench. J Pet 53(12):2441–2464. https://doi.org/10.1093/petrology/egs055

    Article  Google Scholar 

  • Laumonier M, Gaillard F, Muir D, Blundy J, Unsworth M (2017) Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth Planet Sci Lett 457:173–180. https://doi.org/10.1016/j.epsl.2016.10.023

    Article  Google Scholar 

  • Le Friant A, Boudon G, Komorowski J-C, Deplus C (2002) L’île de la Dominique: zone d’émission des avalanches de débris les plus volumineuses de l’arc des Petites Antilles. C R Geosci 334:235–243

    Article  Google Scholar 

  • LeBas MJ, LeMaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Lindsay JM, Stasiuk MV, Shepherd JB (2003) Geological history and potential hazards of the late-Pleistocene to Recent Plat Pays volcanic complex, Dominica, Lesser Antilles. Bull Volcanol 65:201–220

    Google Scholar 

  • Lindsay J, Smith AL, Roobol MJ, Stasiuk MV (2005) Dominica. In: Lindsay JM, Robertson REA, Shepherd JB, Ali S (eds) Volcanic Hazard Atlas of the Lesser Antilles. Seismic Research Unit. The University of West Indies, Trinidad, pp 1–48

    Google Scholar 

  • Macdonald R, Hawkesworth CJ, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Sci Rev 49:1–76. https://doi.org/10.1016/S0012-8252(99)00069-0

    Article  Google Scholar 

  • Martel C, Pichavant M, Bourdier J-L, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth Planet Sci Lett 156:89–99

    Article  Google Scholar 

  • Martel C, Ali AR, Poussineau S, Gourgaud A, Pichavant M (2006) Basalt-inherited microlites in silicic magmas: evidence from Mount Pelée (Martinique, French West Indies). Geology 34(11):905–908. https://doi.org/10.1130/G22672A.1

    Article  Google Scholar 

  • Melekhova E, Blundy J, Martin R, Arculus R, Picahvant M (2017) Petrological and experimental evidence for differentiation of water-rich magmas beneath St. Kitts, Lesser Antilles. Contrib Mineral Petrol 172:98. https://doi.org/10.1007/s00410-017-1416-3

    Article  Google Scholar 

  • Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Mineral Geochem 69(5):333–361

    Article  Google Scholar 

  • Muir DD, Blundy J, Rust AC, Hickey J (2014) Experimental constraints in dacite pre-eruptive magma storage conditions beneath Uturuncu volcano. J Pet. https://doi.org/10.1093/petrology/egu005

    Article  Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel. Comput Geosci 28(5):597–604

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95

    Article  Google Scholar 

  • Paulatto M, Annen CJ, Henstock TJ, Kiddle EJ, Minshull TA, Sparks RSJ, Voight B (2012) Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat. Geochem Geophys Geosyst. https://doi.org/10.1029/2011GC003892

    Article  Google Scholar 

  • Pichavant M, Martel C, Bourdier J-L, Scaillet B (2002) Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc). J Geophys Res 107(B5):2093. https://doi.org/10.1029/2001JB000315

    Article  Google Scholar 

  • Pichavant M, Poussineau S, Lesne P, Solaro C, Bourdier J-L (2018) Experimental parameterization of magma mixing: application to the 1530 AD eruption of La Soufrière, Guadeloupe (Lesser Antilles). J Pet. https://doi.org/10.1093/petrology/egy030

    Article  Google Scholar 

  • Poussineau S (2005) Dynamique des magmas andésitiques: approche expérimentale et pétrostructurale; application à la Soufrière de Guadeloupe et à la Montagne Pelée. PhD thesis, Univ Orléans, p 300

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Article  Google Scholar 

  • Roobol MJ, Wright JV, Smith AL (1983) Calderas or gravity-slide structures in the Lesser Antilles island arc? J Volcanol Geotherm Res 19:121–134. https://doi.org/10.1016/0377-0273(83)90128-2

    Article  Google Scholar 

  • Samper A, Quidelleur X, Boudon G, Le Friant A, Komorowski J-C (2008) Radiometric dating of three large volume flank collapses in the Lesser Antilles Arc. J Volcanol Geotherm Res 176:485–492

    Article  Google Scholar 

  • Sigurdsson H (1972) Partly-welded pyroclast flow deposits in Dominica, Lesser Antilles. Bull Volcanol 36:148–163. https://doi.org/10.1007/BF02596987

    Article  Google Scholar 

  • Sigurdsson H, Carey SN (1981) Marine tephrochronology and quaternary explosive volcanism in the lesser antilles arc. In: Self S, Sparks RSJ (Eeds) Tephra studies. Reidel, Dordredcht, pp 255–280

    Chapter  Google Scholar 

  • Smith AL, Roobol MJ, Mattioli GS, Fryxel JE, Daly GE, Fernandez LA (2013) The volcanic geology of the mid-arc Island of Dominica, Lesser Antilles; the surface expression of an island-arc batholith. Geol Soc Am Spec Pap. https://doi.org/10.1130/2013.2496

    Article  Google Scholar 

  • Solano JMS, Jackson MD, Sparks RSJ, Blundy J, Annen C (2012) Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J Pet 53:1999–2026. https://doi.org/10.1093/petrology/egs041

    Article  Google Scholar 

  • Solaro-Müller C (2017) Storage conditions and dynamics of magma reservoirs feeding the major pumiceous eruptions of Dominica (Lesser Antilles Arc). PhD thesis, Univ. Sorbone Paris Cité, p 330

  • Tamic N, Behrens H, Holtz (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2-H2O fluid phase. Chem Geol 174:333–347

    Article  Google Scholar 

  • Thirlwall MF, Graham AM, Arculus RJ, Harmon RS, Macpherson CG (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb–Sr–Nd–O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmo Acta 60:4785–4810

    Article  Google Scholar 

  • Villemant B, Boudon G (1998) Transition between dome-forming and Plinian eruptive style: H2O and Cl degassing behavior. Nature 392:65–69

    Article  Google Scholar 

  • Wadge G (1984) Comparison of volcanic production rates and subduction rates in the Lesser Antilles and Central America. Geology 12:555–558. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Wadge G, Shepherd JB (1984) Segmentation of the Lesser Antilles subduction zone. Earth Planet Sci Lett 71:297–304. https://doi.org/10.1016/0012-821X(84)90094-3

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Watson EB, Harrison M (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304

    Article  Google Scholar 

  • Webster JD (1997) Chloride solubility in felsic melts and the role of chloride in magmatic degassing. J Pet 38(12):1793–1807. https://doi.org/10.1093/petroj/38.12.1793

    Article  Google Scholar 

  • Webster JD, Holloway JR (1988) Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: new implications for granitic differentiation and ore deposition. Geochem Comochim Acta 52(8):2091–2105

    Article  Google Scholar 

  • Webster JD, Kinzler RJ, Mathez EA (1999) Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochem Comochim Acta 63(5):429–738

    Google Scholar 

  • Webster JD, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: The role of halogens in terrestrial and extraterrestrial geochemical processes. Springer, Berlin, pp 307–430

    Google Scholar 

  • Wilkinson JJ (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat Geosci 6:917–925. https://doi.org/10.1038/ngeo1940

    Article  Google Scholar 

  • Yanagida Y, Nakamura M, Yasuda A, Kuritani T, Nakagawa M, Yoshida T (2018) Differentiation of a hydrous arc magma recorded in melt inclusions in deep crustal cumulate xenoliths from Ichinomegata Maar, NE Japan. Geochem Geophys Geosyst 19:838–864

    Article  Google Scholar 

  • Ziberna L, Green ECR, Blundy JD (2017) Multiple-reaction geobarometry for olivine-bearing igneous rocks. Am Mineral. https://doi.org/10.2138/am-2017-6154

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Arculus, R. Watts and S. Skora for help with sampling at Morne aux Diables, S. Hidalgo for help with sample preparation, M. Fialin, N. Rividi, S. Kearns and B. Buse for EPMA analyses and O. Boudouma for SEM investigations. This work was supported by the TelluS-ALEAS (2013) funding from INSU-CNRS, ERC Advanced Grant CRITMAG and EC FP7 Grant VUELCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Balcone-Boissard.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balcone-Boissard, H., Boudon, G., Blundy, J.D. et al. Deep pre-eruptive storage of silicic magmas feeding Plinian and dome-forming eruptions of central and northern Dominica (Lesser Antilles) inferred from volatile contents of melt inclusions. Contrib Mineral Petrol 173, 101 (2018). https://doi.org/10.1007/s00410-018-1528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1528-4

Keywords

  • Melt inclusion
  • Volatiles
  • Arc magma
  • Dominica
  • Lesser Antilles arc