Skip to main content

Population-wide garnet growth zoning revealed by LA-ICP-MS mapping: implications for trace element equilibration and syn-kinematic deformation during crystallisation

Abstract

The strong partitioning of many trace elements into garnet and their slow diffusivities in both garnet and the rock matrix means that their distribution may record valuable petrogenetic information not documented by major elements in metamorphic rocks. Complex trace element growth zoning in garnet porphyroblasts from a garnet-grade metapelite from the Barrovian sequence of the Sikkim Himalaya is assessed using quantified LA-ICP-MS raster mapping coupled with X-ray micro-computed tomography. The data document systematic changes in the zoning patterns from early- to late-nucleated crystals, and also suggest that the REE+Y chemistry incorporated into garnet is dependent on persistent disequilibrium in the rock volume. There is evidence for HREE+Y diffusion haloes surrounding growing garnets and a heterogeneous HREE+Y distribution in the rock matrix. Annuli superimposed on oscillatory zoning are not consistent with formation during some rock-wide event, but are dependent on the spatial disposition of the garnet. Annuli are interpreted to reflect an integrated history of varying growth rates and the incorporation of pre-existing heterogeneities due to relatively slow matrix diffusivities. Conversely, smooth zoning of many transition metals indicate that their distribution in garnet may be controlled by equilibrium partitioning between garnet and the rock matrix. Significant rotation of garnet porphyroblasts during growth is revealed due to immobility of Cr over the duration of the crystallisation interval and overprinting of the heterogenous precursor Cr distribution. Strain rate estimates derived from this zoning are on the order of \(10^{-11}\)\(10^{-12}\, \hbox {s}^{-1}\).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ague JJ, Carlson WD (2013) Metamorphism as garnet sees it: the kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements 9(6):439–445

    Google Scholar 

  2. Anczkiewicz R, Thirlwall M, Alard O, Rogers NW, Clark C (2012) Diffusional homogenization of light REE in garnet from the Day Nui Con Voi Massif in N-Vietnam: implications for Sm-Nd geochronology and timing of metamorphism in the Red River shear zone. Chem Geol 318:16–30

    Google Scholar 

  3. Anczkiewicz R, Chakraborty S, Dasgupta S, Mukhopadhyay D, Kołtonik K (2014) Timing, duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu-Hf garnet dating: a case study from the Sikkim Himalaya, NE India. Earth Planet Sci Lett 407:70–81

    Google Scholar 

  4. Barr TD, Houseman GA (1996) Deformation fields around a fault embedded in a non-linear ductile medium. Geophys J Int 125(2):473–490

    Google Scholar 

  5. Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37(3):521–552

    Google Scholar 

  6. Bea F, Pereira M, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem Geol 117(1–4):291–312

    Google Scholar 

  7. Bea F, Montero P, Garuti G, Zacharini F (1997) Pressure-dependence of rare earth element distribution in amphibolite-and granulite-grade garnets. A LA-ICP-MS study. Geostand Geoanal Res 21(2):253–270

    Google Scholar 

  8. Bell T (1985) Deformation partitioning and porphyroblast rotation in meta-morphic rocks: a radical reinterpretation. J Metamorph Geol 3(2):109–118

    Google Scholar 

  9. Bell T, Johnson S (1989) Porphyroblast inclusion trails: the key to orogenesis. J Metamorph Geol 7(3):279–310

    Google Scholar 

  10. Berg C, Carlson W, Connelly J (2013) Strain rates at high temporal resolution from curved inclusion trails in garnet, Passo del Sole, Central Swiss Alps. J Metamorph Geol 31(3):243–262

    Google Scholar 

  11. Bhattacharyya K (2010) Geometry and kinematics of the fold-thrust belt and structural evolution of the major Himalayan fault zones in the Darjeeling—Sikkim Himalaya, India. Ph.D. thesis, University of Rochester

  12. Bhattacharyya K, Mitra G (2009) A new kinematic evolutionary model for the growth of a duplex—an example from the Rangit duplex, Sikkim Himalaya, India. Gondwana Res 16(3):697–715

    Google Scholar 

  13. Bhattacharyya K, Mitra G (2011) Strain softening along the MCT zone from the Sikkim Himalaya: relative roles of quartz and micas. J Struct Geol 33(6):1105–1121

    Google Scholar 

  14. Biermeier C, Stüwe K (2003) Strain rates from snowball garnet. J Metamorph Geol 21(3):253–268

    Google Scholar 

  15. Biermeier C, Stüwe K, Barr T (2001) The rotation rate of cylindrical objects during simple shear. J Struct Geol 23(5):765–776

    Google Scholar 

  16. Bose S, Mandal N, Acharyya S, Ghosh S, Saha P (2014) Orogen-transverse tectonic window in the Eastern Himalayan fold belt: a superposed buckling model. J Struct Geol 66:24–41

    Google Scholar 

  17. Burg J, Chen G (1984) Tectonics and structural zonation of southern Tibet, China. Nature 311(5983):219–223

    Google Scholar 

  18. Burns RG (1993) Mineralogical applications of crystal field theory, vol 5. Cambridge University Press, Cambridge

    Google Scholar 

  19. Burton W-K, Cabrera N, Frank F (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc Lond A Math Phys Eng Sci 243(866):299–358

    Google Scholar 

  20. Cahalan RC, Kelly ED, Carlson WD (2014) Rates of Li diffusion in garnet: coupled transport of Li and Y+REEs. Am Mineral 99(8–9):1676–1682

    Google Scholar 

  21. Carlson WD (1989) The significance of intergranular diffusion to the mechanisms and kinetics of porphyroblast crystallization. Contrib Mineral Petrol 103(1):1–24

    Google Scholar 

  22. Carlson WD (2002) Presidential address. Scales of disequilibrium and rates of equilibration during metamorphism. Am Mineral 87(2–3):185–204

    Google Scholar 

  23. Carlson WD (2006) Dana lecture. Rates of Fe, Mg, Mn, and Ca diffusion in garnet. Am Mineral 91(1):1–11

    Google Scholar 

  24. Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Mineral 97(10):1598–1618

    Google Scholar 

  25. Catlos E, Harrison TM, Kohn MJ, Grove M, Ryerson F, Manning CE, Upreti B (2001) Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J Geophys Res Solid Earth 106(B8):16177–16204

    Google Scholar 

  26. Catlos E, Dubey C, Harrison T, Edwards M (2004) Late Miocene movement within the Himalayan Main Central Thrust shear zone, Sikkim, north-east India. J Metamorph Geol 22(3):207–226

    Google Scholar 

  27. Chernoff C, Carlson W (1997) Disequilibrium for Ca during growth of pelitic garnet. J Metamorph Geol 15(4):421–438

    Google Scholar 

  28. Cherniak DJ (2005) Yb and Y diffusion in grossular garnet. Geochimica et Cosmochimica Acta Suppl 69:A405

    Google Scholar 

  29. Corrie SL, Kohn MJ (2008) Trace-element distributions in silicates during prograde metamorphic reactions: implications for monazite formation. J Metamorph Geol 26(4):451–464

    Google Scholar 

  30. Daniel CG, Spear FS (1998) Three-dimensional patterns of garnet nucleation and growth. Geology 26(6):503–506

    Google Scholar 

  31. Darken LS, Gurry RW (1953) Physical chemistry of metals. CBS Publishers and Distributors, New Delhi

    Google Scholar 

  32. Dasgupta S, Ganguly J, Neogi S (2004) Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P–T gradient and implications. J Metamorph Geol 22(5):395–412

    Google Scholar 

  33. Dasgupta S, Chakraborty S, Neogi S (2009) Petrology of an inverted Barrovian sequence of metapelites in Sikkim Himalaya, India: constraints on the tectonics of inversion. Am J Sci 309(1):43–84

    Google Scholar 

  34. Edmunds W, Atherton M (1971) Polymetamorphic evolution of garnet in the Fanad aureole, Donegal, Eire. Lithos 4(2):147–161

    Google Scholar 

  35. Faccenda M, Gerya TV, Chakraborty S (2008) Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103(1–2):257–287

    Google Scholar 

  36. Finlay CA, Kerr A (1979) Garnet growth in a metapelite from the Moinian rocks of northern Sutherland, Scotland. Contrib Mineral Petrol 71(2):185–191

    Google Scholar 

  37. Gaidies F, De Capitani C, Abart R (2008) THERIA\_G: a software program to numerically model prograde garnet growth. Contrib Mineral Petrol 155(5):657–671

    Google Scholar 

  38. Gaidies F, Petley-Ragan A, Chakraborty S, Dasgupta S, Jones P (2015) Constraining the conditions of Barrovian metamorphism in Sikkim, India: P-T-t paths of garnet crystallization in the Lesser Himalayan Belt. J Metamorph Geol 33(1):23–44

    Google Scholar 

  39. George F, Gaidies F (2017) Characterisation of a garnet population from the Sikkim Himalaya: insights into the rates and mechanisms of porphyroblast crystallisation. Contrib Mineral Petrol 172(7):57

    Google Scholar 

  40. Ghosh S, Bose S, Mandal N, Dasgupta S (2016) Dynamic recrystallization mechanisms and their transition in the Daling Thrust (DT) zone, Darjeeling–Sikkim Himalaya. Tectonophysics 674:166–181

    Google Scholar 

  41. Griera A, Bons PD, Jessell MW, Lebensohn RA, Evans L, Gomez-Rivas E (2011) Strain localization and porphyroclast rotation. Geology 39(3):275–278

    Google Scholar 

  42. Habler G, Thöni M, Grasemann B (2009) Cretaceous metamorphism in the Austroalpine Matsch Unit (Eastern Alps): the interrelation between deformation and chemical equilibration processes. Mineral Petrol 97(3–4):149

    Google Scholar 

  43. Hall R (1953) Segregation of impurities during the growth of germanium and silicon. J Phys Chem 57(8):836–839

    Google Scholar 

  44. Haskin LA, Wildeman TR, Frey FA, Collins KA, Keedy CR, Haskin MA (1966) Rare earths in sediments. J Geophys Res 71(24):6091–6105

    Google Scholar 

  45. Heinrich W, Rehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15(1):3–16

    Google Scholar 

  46. Heinrich C, Pettke T, Halter W, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67(18):3473–3497

    Google Scholar 

  47. Hellstrom J, Paton C, Woodhead J, Hergt J (2008) Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. Mineral Assoc Can Short Course Ser 40:343–348

    Google Scholar 

  48. Hickey K, Bell T (1999) Behaviour of rigid objects during deformation and metamorphism: a test using schists from the Bolton syncline, Connecticut, USA. J Metamorph Geol 17:211–228

    Google Scholar 

  49. Hickmott DD, Shimizu N (1990) Trace element zoning in garnet from the Kwoiek Area, British Columbia: disequilibrium partitioning during garnet growth? Contrib Mineral Petrol 104(6):619–630

    Google Scholar 

  50. Hickmott D, Spear FS (1992) Major-and trace-element zoning in garnets from calcareous pelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth histories in retrograded rocks. J Petrol 33(5):965–1005

    Google Scholar 

  51. Hickmott D, Shimizu N, Spear F, Selverstone J (1987) Trace-element zoning in a metamorphic garnet. Geology 15(6):573–576

    Google Scholar 

  52. Hickmott D, Treves B, Roselle G, Baumgartner L (1997) Micro-PIXE analysis of carbonates and silicates: tracking fluid flow in crustal environments. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 130(1–4):660–665

    Google Scholar 

  53. Holm DK, Selverstone J (1990) Rapid growth and strain rates inferred from synkinematic garnets, Penokean orogeny, Minnesota. Geology 18(2):166–169

    Google Scholar 

  54. Ildefonse B, Sokoutis D, Mancktelow NS (1992) Mechanical interactions between rigid particles in a deforming ductile matrix. Analogue experiments in simple shear flow. J Struct Geol 14(10):1253–1266

    Google Scholar 

  55. Jackson SE, Longerich HP, Dunning GR, Freyer BJ (1992) The application of laser-ablation microprobe inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can Mineral 30(4):1049–1064

    Google Scholar 

  56. Janots E, Engi M, Berger A, Allaz J, Schwarz J-O, Spandler C (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610 \(^{\circ }\)C. J Metamorph Geol 26(5):509–526

    Google Scholar 

  57. Johnson SE (2009) Porphyroblast rotation and strain localization: debate settled!. Geology 37(7):663–666

    Google Scholar 

  58. Johnson S, Dupee M, Guidotti C (2006) Porphyroblast rotation during crenulation cleavage development: an example from the aureole of the Mooselookmeguntic pluton, Maine, USA. J Metamorph Geol 24(1):55–73

    Google Scholar 

  59. Jung S, Hellebrand E (2006) Trace element fractionation during high-grade metamorphism and crustal melting—constraints from ion microprobe data of metapelitic, migmatitic and igneous garnets and implications for Sm-Nd garnet chronology. Lithos 87(3):193–213

    Google Scholar 

  60. Kelly E, Carlson W, Connelly J (2011) Implications of garnet resorption for the Lu-Hf garnet geochronometer: an example from the contact aureole of the Makhavinekh Lake Pluton, Labrador. J Metamorph Geol 29(8):901–916

    Google Scholar 

  61. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437(7059):724

    Google Scholar 

  62. Kohn MJ (2004) Oscillatory- and sector-zoned garnets record cyclic (?) rapid thrusting in central Nepal. Geochem Geophys Geosyst 5(12):1–9

    Google Scholar 

  63. Kohn MJ (2009) Models of garnet differential geochronology. Geochim Cosmochim Acta 73(1):170–182

    Google Scholar 

  64. Kohn MJ, Malloy MA (2004) Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations. Geochim Cosmochim Acta 68(1):101–113

    Google Scholar 

  65. Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Mineral 100(4):897–908

    Google Scholar 

  66. Konrad-Schmolke M, O’Brien PJ, de Capitani C, Carswell DA (2008) Garnet growth at high-and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos 103(3):309–332

    Google Scholar 

  67. Lanzirotti A (1995) Yttrium zoning in metamorphic garnets. Geochim Cosmochim Acta 59(19):4105–4110

    Google Scholar 

  68. Le Fort P (1975) Himalayas: the collided range. Present knowledge of the continental arc. Am J Sci 275(1):44

    Google Scholar 

  69. Martin AJ (2009) Sub-millimeter heterogeneity of yttrium and chromium during growth of semi-pelitic garnet. J Petrol 50(9):1713–1727

    Google Scholar 

  70. Menard T, Spear FS (1996) Interpretation of plagioclase zonation in calcic pelitic schist, south Strafford, Vermont, and the effects on thermobarometry. Can Mineral 34(1):133–146

    Google Scholar 

  71. Mohan A, Windley B, Searle M (1989) Geothermobarometry and development of inverted metamorphism in the Darjeeling-Sikkim region of the eastern Himalayan. J Metamorph Geol 7(1):95–110

    Google Scholar 

  72. Moore S, Carlson W, Hesse M (2013) Origins of yttrium and rare earth element distributions in metamorphic garnet. J Metamorph Geol 31(6):663–689

    Google Scholar 

  73. Mottram CM, Argles T, Harris N, Parrish R, Horstwood M, Warren C, Gupta S (2014a) Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. J Geol Soc 171(2):255–268

    Google Scholar 

  74. Mottram CM, Warren CJ, Regis D, Roberts NM, Harris NB, Argles TW, Parrish RR (2014b) Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth Planet Sci Lett 403:418–431

    Google Scholar 

  75. Mukhopadhyay DK, Chakraborty S, Trepmann C, Rubatto D, Anczkiewicz R, Gaidies F, Dasgupta S, Chowdhury P (2017) The nature and evolution of the Main Central Thrust: structural and geochronological constraints from the Sikkim Himalaya, NE india. Lithos 282:447–463

    Google Scholar 

  76. Müller W, Aerden D, Halliday AN (2000) Isotopic dating of strain fringe increments: duration and rates of deformation in shear zones. Science 288(5474):2195–2198

    Google Scholar 

  77. Norman M, Pearson N, Sharma A, Griffin W (1996) Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostand Geoanal Res 20(2):247–261

    Google Scholar 

  78. Passchier C, Trouw R, Zwart H, Vissers R (1992) Porphyroblast rotation: eppur si muove? J Metamorph Geol 10(3):283–294

    Google Scholar 

  79. Paterson S, Vernon R (2001) Inclusion trail patterns in porphyroblasts from the Foothills Terrane, California: a record of orogenesis or local strain heterogeneity? J Metamorph Geol 19(4):351–372

    Google Scholar 

  80. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26(12):2508–2518

    Google Scholar 

  81. Paul B, Paton C, Norris A, Woodhead J, Hellstrom J, Hergt J, Greig A (2012) Cellspace: a module for creating spatially registered laser ablation images within the Iolite freeware environment. J Anal At Spectrom 27(4):700–706

    Google Scholar 

  82. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21(1):115–144

    Google Scholar 

  83. Pyle JM, Spear FS (1999) Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Mater Res 1(6):1–49

    Google Scholar 

  84. Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. J Petrol 42(11):2083–2107

    Google Scholar 

  85. Raimondo T, Payne J, Wade B, Lanari P, Clark C, Hand M (2017) Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet. Contrib Mineral Petrol 172(4):17

    Google Scholar 

  86. Rocholl A (1998) Major and trace element composition and homogeneity of microbeam reference material: basalt glass USGS BCR-2G. Geostand Newslett 22(1):33–45

    Google Scholar 

  87. Rosenfeld JL (1970) Rotated garnets in metamorphic rocks. Geol Soc Am Spec Pap 129:1–102

    Google Scholar 

  88. Schoneveld C (1977) A study of some typical inclusion patterns in strongly paracrystalline-rotated garnets. Tectonophysics 39(1–3):453–471

    Google Scholar 

  89. Skora S, Baumgartner LP, Mahlen NJ, Johnson CM, Pilet S, Hellebrand E (2006) Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu-Hf and Sm-Nd geochronology. Contrib Mineral Petrol 152(6):703–720

    Google Scholar 

  90. Skora S, Lapen TJ, Baumgartner LP, Johnson CM, Hellebrand E, Mahlen NJ (2009) The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy. Earth Planet Sci Lett 287(3–4):402–411

    Google Scholar 

  91. Smit MA, Scherer EE, Mezger K (2013) Lu-Hf and Sm-Nd garnet geochronology: chronometric closure and implications for dating petrological processes. Earth Planet Sci Lett 381:222–233

    Google Scholar 

  92. Spear FS, Selverstone J, Hickmott D, Crowley P, Hodges KV (1984) PT paths from garnet zoning: a new technique for deciphering tectonic processes in crystalline terranes. Geology 12(2):87–90

    Google Scholar 

  93. Stowell HH, Menard T, Ridgway CK (1996) Ca-metasomatism and chemical zonation of garnet in contact-metamorphic aureoles, Juneau Gold Belt, southeastern Alaska. Can Mineral 34(6):1195–1209

    Google Scholar 

  94. Stüwe K (1997) Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib Mineral Petrol 129(1):43–52

    Google Scholar 

  95. Tiller WA (1991) The science of crystallization: macroscopic phenomena and defect generation. Cambridge University Press, Cambridge

    Google Scholar 

  96. Ulrich T, Kamber BS, Jugo PJ, Tinkham DK (2009) Imaging element-distribution patterns in minerals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Can Mineral 47(5):1001–1012

    Google Scholar 

  97. Viete DR, Lister GS (2016) On the significance of short-duration regional metamorphism. J Geol Soc 174:377–392

    Google Scholar 

  98. Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60(24):5013–5020

    Google Scholar 

  99. Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Mineral 80(11–12):1179–1187

    Google Scholar 

  100. Watson EB, Müller T (2009) Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions. Chem Geol 267(3):111–124

    Google Scholar 

  101. Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 31(4):331–343

    Google Scholar 

  102. Yang P, Pattison D (2006) Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota. Lithos 88(1):233–253

    Google Scholar 

  103. Yang P, Rivers T (2001) Chromium and manganese zoning in pelitic garnet and kyanite: spiral, overprint, and oscillatory (?) zoning patterns and the role of growth rate. J Metamorph Geol 19(4):455–474

    Google Scholar 

  104. Yang P, Rivers T, Jackson S (1999) Crystal-chemical and thermal controls on trace-element partitioning between coexisting garnet and biotite in metamorphic rocks from western Labrador. Can Mineral 37(2):443–468

    Google Scholar 

  105. Zhao G, Wilde SA, Cawood PA, Lu L (2000) Petrology and P–T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China Craton. J Metamorph Geol 18(4):375–391

    Google Scholar 

  106. Zulauf G, Helferich S (1997) Strain and strain rate in a synkinematic trondhjemitic dike: evidence for melt-induced strain softening during shearing (Bohemian Massif, Czech Republic). J Struct Geol 19(5):639–652

    Google Scholar 

Download references

Acknowledgements

This research was supported by NSERC research grant 315857 to F.G. Chris McFarlane at the University of New Brunswick is thanked for LA-ICP-MS access and assistance. Theodoros Ntaflos and Franz Kiraly at the University of Vienna are thanked for FE-EMPA data collection. Thanks to Jay Ague and Robert Anczkiewicz for constructive reviews that significantly improved the presentation of this work, and to Jochen Hoefs for timely and helpful editorial handling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. R. George.

Additional information

Communicated by Jochen Hoefs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

George, F.R., Gaidies, F. & Boucher, B. Population-wide garnet growth zoning revealed by LA-ICP-MS mapping: implications for trace element equilibration and syn-kinematic deformation during crystallisation. Contrib Mineral Petrol 173, 74 (2018). https://doi.org/10.1007/s00410-018-1503-0

Download citation

Keywords

  • Trace elements
  • Rare-earth elements
  • Garnet zoning
  • Crystal growth
  • Equilibrium
  • Spiral zoning
  • LA-ICP-MS