Skip to main content

Advertisement

Log in

The contrasting geochemical message from the New Caledonia gabbronorites: insights on depletion and contamination processes of the sub-arc mantle in a nascent arc setting

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The New Caledonia ophiolite hosts one of the rare examples of crust-mantle sections built in a nascent arc environment, providing the unique opportunity to investigate the first stages of arc magmatism in a subduction setting. The sequence consists of refractory harzburgites, overlain by ultramafic (dunites and wehrlites) and mafic lithologies (gabbronorites). The gabbronorites occur in the upper part of the sequence as decimetre to metre-size sills. They are mainly formed (≃ 55 to 70 vol%) of Ca-rich plagioclase (An up to 96 mol%) and high Mg# (88–92), Al2O3-poor (1.5–2.4 wt%) clinopyroxene (8–20 vol%), often rimmed by interstitial or poikilitic orthopyroxene (6–27 vol%). Mg-rich olivine (3–15 vol%, Fo = 87–89 mol%) occurs as anhedral, resorbed crystals. Whole rock (WR) compositions exhibit high Mg# (86–92) and strikingly low trace element contents. They own LREE-depleted patterns, with nearly flat (0.82 ≤ DyN/YbN ≤ 1.00) and low HREE (YbN = 0.2–0.9) and positive Eu anomalies. Clinopyroxene trace element chemistry mirrors the extreme depletion of the WR. By contrast, FME enrichments are observed for WR and clinopyroxene. Geochemical models show that the gabbronorites crystallized from primitive, ultra-depleted melts bearing evidence of fluid contamination processes, but with significantly different geochemical signatures compared to boninitic rocks worldwide, i.e. lower LREE-MREE, and absence of Nb depletion and Zr–Hf enrichments. Nd isotopes (+ 8.2 ≤ εNdi ≤ + 13.1), together with radiogenic Pb isotopic ratios, support an origin from a DMM source variably modified by slab fluids. We propose that the geochemical signature of the New Caledonia gabbronorites reflect emplacement of primitive, non-aggregated, magma batches in the lower fore-arc crust, during the first phases of arc formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam J, Green TH, Day RA (1992) An experimental study of two garnet pyroxenite xenoliths from the Bullenmerri and Gnotuk Maars of western Victoria, Australia. Contrib Mineral Petrol 111:505–514

    Google Scholar 

  • Aitchison JC, Clarke L, Meffre S, Cluzel D (1995) Eocene arc-continent collision in New Caledonia and implications for regional Southwest Pacific tectonic evolution. Geology 23:161–164

    Google Scholar 

  • Avias J (1967) Overthrust structure of the main ultrabasic New Caledonian massifs. Tectonophysics 4:531–541

    Google Scholar 

  • Barnes SJ (1986) The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib Mineral Petrol 93:524–531

    Google Scholar 

  • Bedard JH (1994) A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chem Geol 118:143–153

    Google Scholar 

  • Benard A, Ionov DA (2012) A new petrogenetic model for low-Ca boninites: evidence from veined sub-arc xenoliths on melt-mantle interaction and melt. Geochem Geophys Geosyst 13(1):Q0AF05. https://doi.org/10.1029/2012GC004145

    Google Scholar 

  • Bénard A, Nebel O, Ionov DA et al (2016) Primary silica-rich picrite and high-ca boninite melt inclusions in pyroxenite veins from the Kamchatka sub-arc mantle. J Petrol 57:1955–1982

    Google Scholar 

  • Benoit M, Polvé M, Ceuleneer G (1996) Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chem Geol 134:199–214

    Google Scholar 

  • Benoit M, Ceuleneer G, Polve M (1999) The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs. Nature 402:514–518

    Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46:135–167

    Google Scholar 

  • Bodinier J-L, Garrido CJ, Chanefo I et al (2008) Origin of pyroxenite-peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). J Petrol 49:999–1025

    Google Scholar 

  • Cameron WE (1985) Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Mineral Petrol 89:239–255

    Google Scholar 

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151

    Google Scholar 

  • Cluzel D, Chiron D, Courme MD (1998) Discordance de l’Eocène supérieur et événements pré-obduction en nouvelle-Calédonie (Pacifique Sud-Ouest). Comptes rendus l’Académie des Sciences Série 2 Sci de la Terre et des Planetes 327:485–491

    Google Scholar 

  • Cluzel D, Aitchison JC, Picard C (2001) Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): geodynamic implications. Tectonophysics 340:23–59

    Google Scholar 

  • Cluzel D, Meffre S, Maurizot P, Crawford AJ (2006) Earliest Eocene (53 Ma) convergence in the Southwest Pacific: evidence from pre-obduction dikes in the ophiolite of New Caledonia. Terra Nova 18:395–402

    Google Scholar 

  • Cluzel D, Maurizot P, Collot J, Sevin B (2012) An outline of the geology of New Caledonia; from Permian–Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene evolution. Episodes 35:72–86

    Google Scholar 

  • Cluzel D, Ulrich M, Jourdan F, Meffre S, Paquette J-L, Audeat M-A, Secchiari A, Maurizot P (2016) Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc. Lithos 260:429–442

    Google Scholar 

  • Coogan L, Banks G, Gillis CK, MacLeod CJ, Pearce JA (2003) Hidden melting signatures recorded in the Troodos ophiolite plutonic suite: evidence for widespread generation of depleted melts and intra-crustal melt aggregation. Contrib Mineral Petrol 144:484–506

    Google Scholar 

  • Cooper LB, Plank T, Arculus RJ et al (2010) High-Ca boninites from the active Tonga Arc. J Geophys Res 115:B10206

    Google Scholar 

  • Crawford AJ, Falloon TJ, Green DH (1989) Classification, pedogenesis and tectonic setting of boninites. In: Boninites and related rocks. Unwin Hyman, Boston, 1–49

    Google Scholar 

  • DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94:4373–4391

    Google Scholar 

  • De Hoog JCM, Gall L, Cornell DH (2010) Trace element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270:196–215

    Google Scholar 

  • Dhuime B, Bosch D, Bodinier JL et al (2007) Multistage evolution of the Jijal ultramafic–mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth Planet Sci Lett 261:179–200

    Google Scholar 

  • Dupré B, Allègre, CJ (1983) Pb-Sr isotope variation in Indian Ocean Basalts and mixing phenomena. Nature 303:142–146

    Google Scholar 

  • Dupuy C, Dostal J, Leblanc M (1981) Geochemistry of an ophiolitic complex from New Caledonia. Contrib Mineral Petrol 76:77–83

    Google Scholar 

  • Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett 196:197–212

    Google Scholar 

  • Eissen J-P, Crawford AJ, Cotten J et al (1998) Geochemistry and tectonic significance of basalts in the Poya Terrane, New Caledonia. Tectonophysics 284:203–219

    Google Scholar 

  • Elliott T, Plank T, Zindler A et al (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019

    Google Scholar 

  • Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152:611–638

    Google Scholar 

  • Fumagalli P, Borghini G, Rampone E, Poli S (2017) Experimental calibration of Forsterite–Anorthite–Ca-Tschermak–Enstatite (FACE) geobarometer for mantle peridotites. Contrib Mineral Petrol 172:38

    Google Scholar 

  • Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subduction-related igeneous rocks. Nature 365:332–334

    Google Scholar 

  • Gallien F, Mogessie A, Hauzenberger CA, Bjerg E, Delpino S, De Machuca C, B (2012) On the origin of multi-layer coronas between olivine and plagioclase at the gabbro–granulite transition, Valle Fértil–La Huerta Ranges, San Juan Province, Argentina. J Metamorph Geol 30:281–301

    Google Scholar 

  • Garrido CJ, Bodinier JL, Dhuime B et al (2007) Origin of the island arc Moho transition zone via melt-rock reaction and its implications for intracrustal differentiation of island arcs: evidence from the Jijal complex (Kohistan complex, northern Pakistan). Geology 35:683–686

    Google Scholar 

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53

    Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    Google Scholar 

  • Greene AR (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J Petrol 47:1051–1093

    Google Scholar 

  • Guillon JH, Gonord H (1972) Premieres données radiometriques concernant les basaltes de Nouvelle Calkdonie, leurs relations avec les grands Bvenements de i’histoire geologique de I’arc Melanesien inteme au Cenozoique. CR Acad Sci Paris 275(D):309–312

    Google Scholar 

  • Hamelin B, Allègre CJ (1985) Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature 315:196–199

    Google Scholar 

  • Hauff F, Hoernle K, Schmidt A (2003) Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem Geophys Geosyst 4

  • Hemming SR, McLennan SM (2001) Pb-isotope composition of modern deep sea turbidites. Earth Planet Sci Lett 184:489–503

    Google Scholar 

  • Herzberg C (2004) Partial crystallization of Mid-Ocean Ridge basalts in the crust and mantle. J Petrol 45:2389–2405

    Google Scholar 

  • Hickey-Vargas R, Hergt JM, Spadea P (1995) The Indian Ocean-type isotopic signature in Western Pacific marginal basins: origin and significance. In: Active margins and marginal basins of Western Pacific, pp 175–199

  • Hochstaedter A, Gill J, Peters R, Broughton P, Holden P, Taylor B (2001) Across-arc geochemical trends in the Izu-Bonin arc: contributions from the subducting slab. Geochem Geophys Geosyst. https://doi.org/10.1029/2000GC000105

    Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson RW, Holland HD, Turekian KK (eds) Treatise on geochemistry: the mantle and core. Elsevier, New York, pp 61–101

    Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992) Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostand Newsl 16:311–315

    Google Scholar 

  • Irving AJ (1974) Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipes, Australia. J Petrol 15:1–40

    Google Scholar 

  • Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S, Harigane Y, Sakamoto I, Miyajima Y, Yuasa M, Dunkley DJ (2011) The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet Sci Lett 306:229–240

    Google Scholar 

  • Kamenetsky VS, Sobolev AV, Eggins SM et al (2002) Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched components. Chem Geol 183:287–303

    Google Scholar 

  • Kamenov GD, Perfit MR, Mueller PA, Jonasson IR (2008) Controls on magmatism in an island arc environment: study of lavas and sub-arc xenoliths from the Tabar–Lihir–Tanga-Feni island chain, Papua New Guinea. Contrib Mineral Petrol 155:635–656

    Google Scholar 

  • Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt–rock reaction in the upper mantle. Nature 358:635–641

    Google Scholar 

  • Kelemen PB, Koga K, Shimizu N (1997) Geochemistry of gabbro sills in the crust/mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet Sci Lett 146:475–488

    Google Scholar 

  • Kimura JI, Hacker R, van Keken PE, Kawabata H, Yoshida, T, Stern RJ (2009) Arc basalt simulator version 2, a simulation for slab dehydration and fluid-fluxed mantle melting for arc basalts: modeling scheme and application. Geochem Geophys Geosyst 10:Q09004. https://doi.org/10.1029/2008GC002217

    Google Scholar 

  • König S, Münker C, Schuth S et al (2010) Boninites as windows into trace element mobility in subduction zones. Geochim Cosmochim Acta 74:684–704

    Google Scholar 

  • Kushiro I, Shimizu N, Nakamura Y, Akimoto S (1972) Compositions of coexisting liquid and solid phases formed upon melting of natural garnet and spinel lherzolites at high pressures: a preliminary report. Earth Planet Sci Lett 14:19–25

    Google Scholar 

  • Lagabrielle Y, Chauvet A, Ulrich M, Guillot S (2013) Passive obduction and gravity-driven emplacement of large ophiolitic sheets: the New Caledonia ophiolite (SW Pacific) as a case study? Bull la Soc Geol Fr 184:545–556

    Google Scholar 

  • Li YB, Kimura JI, Machida S et al (2013) High-Mg adakite and low-Ca boninite from a bonin fore-arc seamount: implications for the reaction between slab melts and depleted mantle. J Petrol 54:1149–1175

    Google Scholar 

  • Mahoney JJ, Watland JH, White WM, Podera RBSH, Fisher RL, Baxter A (1989) Isotopic and geochemical provinces of the Indian Ocean spreading centers. J Geophys Res 94:4033–4052

    Google Scholar 

  • Mahoney JJ, Frei R, Tejada MLG et al (1998) Tracing the Indian Ocean mantle domain through time: isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. J Petrol 39:1285–1306

    Google Scholar 

  • Marchesi C, Garrido CJ, Godard M, Belley F, Ferré E (2009) Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia). Chem Geol 266:171–186

    Google Scholar 

  • Mitchell AL, Grove TL (2015) Melting the hydrous, subarc mantle: the origin of primitive andesites. Contrib Mineral Petrol 170:13

    Google Scholar 

  • Mysen BO, Boettcher AL (1975) Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J Petrol 16:520–548

    Google Scholar 

  • Nandedkar RH, Ulmer P, Muentener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167:1015. https://doi.org/10.1007/s00410-014-1015-5

    Google Scholar 

  • Nicolas A, Prinzhofer A (1983) Cumulative or residual origin for the transition zone in ophiolites: structural evidence. J Petrol 24:188–206

    Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:122–135

    Google Scholar 

  • Othman B, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis and crust–mantle recycling. Earth Planet Sci Lett 94:1–21

    Google Scholar 

  • Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Mineral Petrol 118:420–432

    Google Scholar 

  • Paris JP (1981) Géologie de la Nouvelle-Calédonie, un essai de synthèse. Mém Bur Rech Géol Min, vol 113. Editions du BRGM, Orléans, p 274

    Google Scholar 

  • Parman SW, Grove TL (2004) Harzburgite melting with and without H2O: experimental data and predictive modeling. J Geophys Res Solid Earth 109

  • Pearce NJ (2003) Supra-subduction zone ophiolites: the search for modern analogues. In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geological thought, Geological Society of America Special Paper, vol 373. The Geological Society of America, Boulder, pp 269–293

    Google Scholar 

  • Pearce JA, Baker PE, Harvey PK, Luff IW (1995) Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the south Sandwich island arc. J Petrol 36:1073–1109

    Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144

    Google Scholar 

  • Pearce JA, Kempton PD, Nowell GM, Noble SR (1999) Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. J Petrol 40:1579–1611

    Google Scholar 

  • Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997) Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358

    Google Scholar 

  • Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim acta 298:209–217

    Google Scholar 

  • Pirard C, Hermann J, O’Neill HSC (2013) Petrology and geochemistry of the crust-mantle boundary in a Nascent Arc, Massif du Sud Ophiolite, New Caledonia, SW Pacific. J Petrol 54:1759–1792

    Google Scholar 

  • Plank T (2013) The chemical composition of subducting sediments. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd Edn, vol 4. Elsevier, Oxford, pp 607–629. https://doi.org/10.1016/B978-0-08-095975-7.00319-3

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Google Scholar 

  • Portnyagin MV, Danyushevsky LV, Kamenetsky VS (1997) Coexistence of two distinct mantle sources during formation of ophiolites: a case study of primitive pillow–lavas from the lowest part of the volcanic section of the Troodos Ophiolite, Cyprus. Contrib Mineral Petrol 128:287–301

    Google Scholar 

  • Prinzhofer A (1981) Structure et pétrologie d'un cortège ophiolitique: Le Massif du Sud (Nouvelle–Calédonie). La transition manteau-croûte en milieu océanique. Ecole Normale Supérieure des Mines, Paris, p 185

    Google Scholar 

  • Prinzhoffer A (1987) Processus de fusion dans les zones d’extension océaniques et continentales. Thèse de doctorat d’Etat (SciD thesis), Université Paris VII, p 237

  • Prinzhofer A, Allègre C (1985) Residual peridotites and the mechanisms of partial melting. Earth Planet Sci Lett 74:251–265

    Google Scholar 

  • Prinzhofer A, Nicolas A, Cassard D, Moutte J, Leblanc M, Paris JP, Rabinovitch M (1980) Structures in the new caledonia peridotites-gabbros: implications for oceanic mantle and crust. Tectonophysics 69:85–112

    Google Scholar 

  • Rampone E, Piccardo GB, Hofmann AW (2008) Multi-stage melt–rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contrib Mineral Petrol 156:453–475

    Google Scholar 

  • Rampone E, Borghini G, Godard M, Ildefonse B, Crispini L, Fumagalli P (2016) Melt/rock reaction at oceanic peridotite/gabbro transition as revealed by trace element chemistry of olivine Geochim. Cosmochim Acta 190:309–331

    Google Scholar 

  • Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura J-I, Peate DW, Rowe MC, Woods M (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophys Geosyst 11(3):Q03X12. https://doi.org/10.1029/2009GC002871

    Google Scholar 

  • Reagan MK, Pearce JA, Petronotis K, Almeev R, Avery AJ, Carvallo C, Chapman T, Christenson GL, Ferre EC, Godard M, Heaton DE, Kirchenbaur M, Kurz W, Kutterolf S, Li H, Li Y, Michibayashi K, Morgan S, Nelson WR, Prytulak J, Python M, Robertsn A, Ryan JG, Sager WW, Sakuyama T, Shervais JW, Shimizu K, Whattam SA (2017) Subduction initiation and ophiolite crust: new insights from IODP drilling. Int Geol Rev. https://doi.org/10.1080/00206814.2016.1276482 (in press)

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst. https://doi.org/10.1029/2003GC000597

    Google Scholar 

  • Salters VJ, Mallick S, Hart SR, Langmuir CE, Stracke A (2011) Domains of depleted mantle: new evidence from hafnium and neodymium isotopes. Geochem Geophys Geosyst 12:Q08001. https://doi.org/10.1029/2011GC003617

    Google Scholar 

  • Sanfilippo A, Tribuzio R, Tiepolo M (2014) Mantle–crust interactions in the oceanic lithosphere: constraints from minor and trace elements in olivine. Geochim Cosmochim Acta 141:423–439

    Google Scholar 

  • Schuth S, Rohrbach A, Münker C et al (2004) Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands. Contrib Mineral Petrol 148:288–304

    Google Scholar 

  • Schuth S, König S, Münker C (2011) Subduction zone dynamics in the SW Pacific plate boundary region constrained from high-precision Pb isotope data. Earth Planet Sci Lett 311:328–338

    Google Scholar 

  • Secchiari A, Montanini A, Bosch D et al (2016) Lithos Melt extraction and enrichment processes in the New Caledonia lherzolites: evidence from geochemical and Sr–Nd isotope data. Lithos 260:28–43

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calcalkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Google Scholar 

  • Stern RJ (2004) Subduction initiation: spontaneous and induced. Earth Planet Sci Lett 226:275–292

    Google Scholar 

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636

    Google Scholar 

  • Stern RJ, Reagan M, Ishizuka O et al (2012) To understand subduction initiation, study forearc crust: to understand forearc crust, study ophiolites. Lithosphere 4:469–483

    Google Scholar 

  • Straub SM, Layne GD, Schmidt A, Langmuir CH (2004) Volcanic glasses at the Izu arc volcanic front: New perspectives on fluid and sediment melt recycling in subduction zones. Geochem Geophys Geosyst 5:Q01007. https://doi.org/10.1029/2002GC000408

    Google Scholar 

  • Sun C, Liang Y (2017) A REE-in-plagioclase–clinopyroxene thermometer for crustal rocks. Contrib Mineral Petrol 172:24

    Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Tatsumi Y, Hanyu T (2003) Geochemical modeling of dehydration and partial melting of subducting lithosphere: toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst 4:1081

    Google Scholar 

  • Taylor RN, Nesbitt RV, Vidal P, Russel S, Harmon RS, Auvray B, Croudace IW (1994) Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. J Petrol 35:577–617

    Google Scholar 

  • Treloar PJ, Petterson MG, Jan MQ, Sullivan M (1996) A re-evaluation of the stratigraphy and evolution of the Kohistan arc sequence, Pakistan Himalaya: implications for magmatic and tectonic arc building processes. J Geol Soc Lond 153:681–693

    Google Scholar 

  • Tribuzio R, Tiepolo M, Fiameni S (2008) A mafic-ultramafic cumulate sequence derived from boninite-type melts (Niagara Icefalls, northern Victoria Land, Antarctica). Contrib Mineral Petrol 155:619–633

    Google Scholar 

  • Ulrich M, Picard C, Guillot S et al (2010) Multiple melting stages and refertilization as indicators for ridge to subduction formation: the New Caledonia ophiolite. Lithos 115:223–236

    Google Scholar 

  • Whattam S, Stern RJ (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. J Petrol 162:1031–1045

    Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Google Scholar 

  • Zindler A, Hart S (1986) Chemical Geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to B. Galland, C. Douchet, O. Bruguier, P. Verdoux and P. Telouk for their expertise in chemical room management, ICP-MS, TIMS and MC-ICP-MS analyses, respectively. We would like to thank Daniele Brunelli (University of Modena) and Roberto Braga (University of Bologna) for providing access to XRF analyses. Bob Stern (UT Dallas) and Riccardo Tribuzio (University of Pavia) are acknowledged for their constructive comments on the manuscript. We also thank T.L. Grove for editorial handling. This paper is part of the PhD work of A.S., which was supported by a Vinci grant (Italian–French University) and by Italian-PRIN prot. 2015C5LN35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Montanini.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Secchiari, A., Montanini, A., Bosch, D. et al. The contrasting geochemical message from the New Caledonia gabbronorites: insights on depletion and contamination processes of the sub-arc mantle in a nascent arc setting. Contrib Mineral Petrol 173, 66 (2018). https://doi.org/10.1007/s00410-018-1496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1496-8

Keywords

Navigation