Skip to main content
Log in

Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The 2014–2015 Holuhraun fissure eruption provided a rare opportunity to study in detail the magmatic processes and magma plumbing system dynamics during a 6-month-long, moderate- to large-volume basaltic fissure eruption. In this contribution, we present a comprehensive dataset, including major and trace elements of whole-rock and glassy tephra samples, mineral chemistry, and radiogenic and oxygen isotope analyses from an extensive set of samples (n = 62) that were collected systematically in several field campaigns throughout the entire eruptive period. We also present the first detailed chemical and isotopic characterization of magmatic sulfides from Iceland. In conjunction with a unique set of geophysical data, our approach provides a detailed temporal and spatial resolution of magmatic processes before and during this eruption. The 2014–2015 Holuhraun magma is compositionally indistinguishable from recent basalts erupted from the Bárðarbunga volcanic system, consistent with seismic observations for magma ascent close to the Bárðarbunga central volcano, followed by dyke propagation to the Holuhraun eruption site. Whole-rock elemental and isotopic compositions are remarkably constant throughout the eruption. Moreover, the inferred depth of the magma reservoir tapped during the eruption is consistently 8 ± 5 km, in agreement with geodetic observations and melt inclusion entrapment pressures, but inconsistent with vertically extensive multi-tiered magma storage prior to eruption. The near constancy in the chemical and isotopic composition of the lava is consistent with the efficient homogenization of mantle-derived compositional variability. In contrast, occurrence of different mineral populations, including sulfide globules, which display significant compositional variability, requires a more complex earlier magmatic history. This may include sampling of heterogeneous mantle melts that mixed, crystallized and finally homogenized at mid- to lower-crustal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ágústsdóttir T, Woods J, Greenfield T, Green RG, White RS, Winder T, Brandsdóttir B, Steinthórsson S, Soosalu H (2016) Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dyke intrusion, central Iceland. Geophys Res Lett 43:1495–1503

    Google Scholar 

  • Bali E, Hartley ME, Halldórsson SA, Guðfinsson GH, Jakobsson S (2018) Melt inclusion constraints on volatile systematics and degassing history of the 2014–2015 Holuhraun eruption, Iceland. Contrib Mineral Petrol 173:9

    Google Scholar 

  • Bindeman IN (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69:445–478

    Google Scholar 

  • Bindeman IN, Sigmarsson O, Eiler J (2006) Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and Grimsvötn volcanic system. Earth Planet Sci Lett 245:245–259

    Google Scholar 

  • Bindeman IN, Gurenko A, Sigmarsson O, Chaussidon M (2008) Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochim Cosmochim Acta 72:4397–4420

    Google Scholar 

  • Bindeman IN, Gurenko A, Carley T, Miller C, Martin E, Sigmarsson O (2012) Insight into silicic magma petrogenesis in Iceland based on oxygen isotope diversity and disequilibria between zircon and magma. Terra Nova 24:227–232

    Google Scholar 

  • Breddam K (2002) Kistufell: primitive melt from the Iceland mantle plume. J Petrol 43:345–373

    Google Scholar 

  • Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JMD, Hauri EH (2013) Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496:490–493

    Google Scholar 

  • Carlson RL, Herrick CN (1990) Densities and porosities in the oceanic crust and their variations with depth and age. J Geophys Res Solid Earth 95(B6):9153–9170

    Google Scholar 

  • Chadwick WW Jr, Paduan JB, Clague DA, Dreyer BM, Merle SG, Bobbitt AM, Caress DW, Philip BT, Kelley DS, Nooner SL (2016) Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount. Geophys Res Lett. https://doi.org/10.1002/2016GL071327

    Google Scholar 

  • Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305(3–4):270–282

    Google Scholar 

  • Desmarais E, Segall P (2007) Transient deformation following the 30 January 1997 dike intrusion at Kīlauea volcano, Hawai’I. Bull Volcanol 69:353–363

    Google Scholar 

  • Eason DE, Sinton JM (2009) Lava shields and fissure eruptions of the Western Volcanic Zone, Iceland, evidence for magma chambers and crustal interaction. J Volcanol Geoth Res 186:331–348

    Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Google Scholar 

  • Eiler JM, Grönvold K, Kitchen N (2000) Oxygen isotope evidence for the origin of chemical variations in lavas from Theistareykir volcano in Iceland’s northern volcanic zone. Earth Planet Sci Lett 184:269–286

    Google Scholar 

  • Einarsson P, Sæmundsson K (1987) Earthquake epicenters 1982–1985 and volcanic systems in Iceland: a map. In: Sigfússon Þ (ed) Í hlutarins eðli, Festschrift for Þorbjörn Sigurgeirsson. Menningarsjóður, Reykjavík

    Google Scholar 

  • Fleet ME, Stone WE (1990) Nickeliferous sulfides in xenoliths, olivine megacrysts and basaltic glass. Contrib Mineral Petrol 105:629–636

    Google Scholar 

  • Ford CE, Russell DG, Graven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–265

    Google Scholar 

  • Francis RD (1990) Sulfide globules in mid-ocean ridge basalts (MORB), and the effect of oxygen abundance in Fe–S–O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas. Chem Geol 85:199–213

    Google Scholar 

  • Garcia MO, Pietruszka A, Rhodes JM, Swanson D (2000) Magmatic processes during the prolonged Puu’u’O’o eruption of Kilauea volcano, Hawaii. J Petrol 41:967–990

    Google Scholar 

  • Gauthier P-J, Sigmarsson O, Gouhier M, Haddadi B, Moune S (2016) Elevated gas flux and trace metal degassing from the 2014–2015 fissure eruption at the Bárðarbunga volcanic system, Iceland. J Geophys Res 121:1610–1630

    Google Scholar 

  • Geiger H, Mattson T, Deegan FM, Troll VR, Burchardt S, Gudmundsson Ó, Tryggvason A, Krumbholz M, Harris C (2016) Magma plumbing of the 2014–2015 Holuhraun eruption, Iceland. Geochem Geophys Geosyst. https://doi.org/10.1002/2016GC006317

    Google Scholar 

  • Gíslason SR, Stefánsdóttir G, Pfeffer MA, Barsotti S, Jóhannsson Th, Galeczka I, Bali E, Sigmarsson O, Stefánsson A, Keller NS, Sigurdsson Á, Bergsson B, Galle B, Jacobo VC, Arenallo S, Aiuppa A, Jónasdóttir EB, Eiríksdóttir ES, Jakobsson S, Guðfinsson GH, Halldórsson SA, Gunnarsson H, Haddadi B, Jónsdóttir I, Thordarson Th, Riishuus M, Högnadóttir Th, Dürig T, Pedersen GBM, Höskuldsson Ám Gudmundsson MT (2015) Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem Persp Lett 1:84–93

    Google Scholar 

  • Gómez-Ulla A, Sigmarsson O, Gudfinnsson GH (2017) Trace element systematics of olivine from historical eruptions of Lanzarote, Canary Islands: constraints on mantle source and melting model. Chem Geol 449:99–111

    Google Scholar 

  • Goss AR et al (2010) Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N–9°56′N: implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochem Geophys Geosyst 11:Q05T09

    Google Scholar 

  • Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt (MORB). AGU Geophys Monogr 71:281–310

    Google Scholar 

  • Gudfinnsson GH, Presnall DC (2001) A pressure-independent geothermometer for primitive mantle melts. J Geophys Res 106:16205–16211

    Google Scholar 

  • Gudmundsdóttir ER, Óladóttir BA, Moreland W, Gudnason J (2016) Tephra in the effusive Bárðarbunga 2014–2015 eruption, Iceland. In: Nordic geological winter meeting. Abstract

  • Gudmundsson MT, Jónsdóttir K, Hooper A, Holohan EP, Halldórsson SA, Ófeifsson BG, Cesca S, Vogfjörd KS, Sigmundsson F, Högnadóttir T, Einarsson P, Sigmarsson O, Jarosch AH, Jónasson K, Magnússon E, Hreinsdóttir S, Bagnardi M, Parks MM, Hjörleifsdóttir V, Pálsson F, Walter TR, Schöpfer MPJ, Heimann S, Reynolds HI, Sumont S, Bali E, Gudfinsson GH, Dahm T, Roberts MJ, Hensch M, Belart JMC, Spaans K, Jakobsson S, Gudmundsson GB, Fridriksdóttir HM, Drouin V, Dürig T, Aðalgeirsdóttir G, Riishuus MS, Pedersen GBM, van Boeckel T, Oddsson B, Pfeffer MA, Barsotti S, Bergsson B, Donovan A, Burton MR, Aiuppa A (2016) Gradual caldera collapse at Bárdarbinga volcano, Iceland, regulated by lateral magma outflow. Science 353:262. https://doi.org/10.1126/science.aaf8988

    Google Scholar 

  • Halldórsson SA, Oskarsson N, Grönvold K, Sigurdsson G, Sverrisdottir G, Steinthorsson S (2008) Isotopic heterogeneity of the Thorsa lava—implications for mantle sources and crustal processes within the Eastern Rift Zone. Chem Geol 255:305–316

    Google Scholar 

  • Hartley ME, Thordarson T (2013) The 1874–1876 volcano-tectonic episode at Askja, North Iceland: lateral flow revisited. Geochem Geophys Geosyst 14:2286–2309

    Google Scholar 

  • Hartley ME, Thordarson T, Fitton JG, and EIMF (2013) Oxygen isotopes in melt inclusions and glasses from the Askja volcanic system, North Iceland. Geochim Cosmochim Acta 123:55–73

    Google Scholar 

  • Hartley ME, Morgan DJ, Maclennan J, Edmonds M, Thordarson T (2016) Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe–Mg diffusion in olivine. Earth Planet Sci Lett 439:58–70

    Google Scholar 

  • Hartley ME, Shorttle O, Maclennan J, Moussallam Y, Edmonds M (2017) Olivine-hosted melt inclusions as an archive of redox heterogeneity in magmatic systems. Earth Planet Sci Lett 491:192–205

    Google Scholar 

  • Hartley ME, Bali E, Maclennan J, Neave DA, Halldórsson SA (2018) Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contrib Mineral Petrol 173:10

    Google Scholar 

  • Hattori K, Muehlenbachs K (1982) Oxygen isotope ratios of the Icelandic crust. J Geophys Res 87:6559–6565

    Google Scholar 

  • Hauri EH, Papineau D, Wang J, Hillion F (2016) High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chem Geol 420:148–161

    Google Scholar 

  • Helz RT, Clague DA, Sisson TW, Thornber CR (2014) Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes. In: Poland MP, Takahashi TJ, Landowski CM (eds) Characteristics of Hawaiian volcanoes. U.S. Geological Survey Professional Paper 1801, Golden

    Google Scholar 

  • Hemond C, Arndt NT, Lichtenstein U, Hofmann AW, Oskarsson N, Steinthorsson S (1993) The heterogeneous Iceland plume: Nd–Sr–O isotopes and trace element constraints. J Geophys Res 98:15833–15850

    Google Scholar 

  • Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146

    Google Scholar 

  • Herzberg C, Vidito C, Starkey NA (2016) Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks. Am Miner 101:1952–1966

    Google Scholar 

  • Hudson TS, White RS, Greenfield T, Ágústsdóttir T, Brisbourne A, Green RG (2017) Deep crustal melt plumbing of Bárðarbunga volcano, Iceland. Geophys Res Lett 44(17):8785–8794

    Google Scholar 

  • Jakobsson SP (1979) Outline of the petrology of Iceland. Jökull 29:57–73

    Google Scholar 

  • Jakobsson SP, Jónasson K, Sigurdsson IA (2008) The three igneous rock series of Iceland. Jökull 58:117–138

    Google Scholar 

  • Jónsson Ó (1945) Ódáðahraun I–III. Bókaútgáfan Norðri, Akureyri

    Google Scholar 

  • Jude-Eton TC (2013) Eruption dynamics within an emergent subglacial setting: a case study of the 2004 eruption of Grímsvötn volcano, Iceland. Unpublished Ph.D. Dissertation. University of Edinburgh

  • Keith M, Haase KM, Klemd R, Schwarz-Schampera U, Franke H (2017) Systematic variations in magmatic sulphide chemistry from mid-ocean ridges, back-arc basins and island arcs. Chem Geol 451:67–77

    Google Scholar 

  • Kempton PD, Fitton JG, Saunders AD, Nowell GM, Taylor RN, Hardarson BS, Pearson G (2000) The Iceland plume in space and time: a Sr–Nd–Pb–Hf study of the North Atlantic rifted margin. Earth Planet Sci Lett 177:255–271

    Google Scholar 

  • Kita NT, Huberty JM, Kozdon R, Beard BL, Valley JW (2011) High precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation. Surf Interface Anal 43:427–431

    Google Scholar 

  • Kokfelt TF, Hoernle K, Hauff F, Fiebig J, Werner R, Garbe-Schönberg D (2006) Combined trace element and Pb–Nd–Sr–O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume. J Petrol 47:1705–1749

    Google Scholar 

  • Koornneef JM, Stracke A, Bourdon B, Meier MA, Jochum KP, Stoll B, Grönvold K (2012) Melting of a two-component source beneath Iceland. J Petrol 53:127–157

    Google Scholar 

  • Kullerud G, Yund RA, Moh G (1969) Phase relations in the Cu–Fe–S and Cu–Ni–S systems. In: Wilson HDB (ed) Magmatic Ore Deposits, Economic Geology Monograph, vol 4. Economic Geology Publishing Company, Lancanster, PA, pp 323–343

    Google Scholar 

  • Kuritani T, Yokoyama T, Kitagawa H, Kobayashi K, Nakamura E (2011) Geochemical evolution of historical lavas from Askja volcano, Iceland: implications for mechanisms and timescales of magmatic differentiation. Geochim Cosmochim Acta 75:570–587

    Google Scholar 

  • Labidi J, Cartigny P (2016) Negligible sulfur isotope fractionation during partial melting: evidence from Garrett transform fault basalts and implications for the late-veneer and the hadean matte. Earth Planet Sci Lett 451:196–207

    Google Scholar 

  • Labidi J, Cartigny P, Hamelin C, Moreira M, Dosso L (2014) Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific-Antarctic ridge basalts: a record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochim Cosmochim Acta 133:47–67

    Google Scholar 

  • Langmuir C, Bender J, Bence A, Hanson G, Taylor S (1977) Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge. Earth Planet Sci Lett 36:133–156

    Google Scholar 

  • Li Y, Audétat A (2015) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett 355–356:327–340

    Google Scholar 

  • Maclennan J (2008) Concurrent mixing and cooling of melts under Iceland. J Petrol 49/11:1931–1953

    Google Scholar 

  • Maclennan J, McKenzie D, Hilton F, Grönvold K, Shimizu N (2003) Geochemical variability in a single flow from northern Iceland. J Geophys Res 108:B1. https://doi.org/10.1029/2000JB000142

    Google Scholar 

  • Manning CJ, Thirlwall MF (2014) Isotopic evidence for interaction between Öraefajökull mantle and the Eastern Rift Zone, Iceland. Contrib Mineral Petrol 167:959

    Google Scholar 

  • Matzen AK, Baker MB, Beckett JR, Stolper EM (2013) The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. J Petrol 54:2521–2545

    Google Scholar 

  • Mollo S, Putirka K, Misiti V, Soligo M, Scarato P (2013) A new test for equilibrium based on clinopyroxene-melt pairs: clues on the solidificaition temperatures of Etnean alkaline melts at post-eruptive conditions. Chem Geol 352:92–100

    Google Scholar 

  • Momme P, Oskarsson N, Keys RR (2003) Platinum-group elements in the Icelandic rift system: melting processes and mantle sources beneath Iceland. Chem Geol 196:209–234

    Google Scholar 

  • Moune S, Sigmarsson O, Thordarson T, Gauthier P-J (2007) Recent volatile evolution in the magmatic system of Hekla volcano, Iceland. Earth Planet Sci Lett 255/3:373–389

    Google Scholar 

  • Muehlenbachs K, Anderson AT, Sigvaldason GE (1974) Low-18O basalts from Iceland. Geochim Cosmochim Acta 38:577–588

    Google Scholar 

  • Namur O, Charlier B, Toplis MJ, Auwera JV (2012) Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm. Contrib Mineral Petrol 163:133–150

    Google Scholar 

  • Neave DA, Putirka K (2017) Clinopyroxene-liquid barometry revisited: magma storage pressures under Icelandic rift zones. Am Miner 102:777–794

    Google Scholar 

  • Neave DA, Passmore E, Maclennan J, Fitton G, Thordarson T (2013) Crystal-melt relationships and the record of deep mixing and crystallization in the AD 1783 Laki eruption. Icel J Petrol 54:1661–1690

    Google Scholar 

  • Neave DA, Maclennan J, Hartley ME, Edmonds M, Thordarson T (2014) Crystal storage and transfer in basaltic systems: the Skuggafjöll eruption, Iceland. J Petrol 12:2311–2346

    Google Scholar 

  • Neave DA, Buisman I, Maclennan J (2017) Continuous mush disaggregation during the long-lasting Laki fissure eruption. Am Miner 102:2007–2021

    Google Scholar 

  • Nikolaev GS, Ariskin AA, Barmina GS, Nazarov MA, Almeev RR (2016) Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel. Geochem Int 54:301–320

    Google Scholar 

  • Óladóttir BA (2009) Holocene eruption history and magmatic evolution of the subglacial volcanoes, Grímsvötn, Bárdarbunga and Kverkfjöll beneath Vatnajökull, Iceland. Unpublished Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand and University of Iceland, Reykjavík

  • Pagli C, Sigmundsson F, Pedersen R, Einarsson P, Árnadóttir Th, Feigl KL (2007) Crustal deformation associated with the 1996 Gjálp subglacial eruption, Iceland: InSAR studies in affected areas adjacent to the Vatnajökull ice cap. Earth Planet Sci Lett 259:24–33

    Google Scholar 

  • Passmore E, Maclennan J, Fitton G, Thordarson T (2012) Mush disaggregation in basaltic magma chambers from the AD 1783 Laki eruption. J Petrol 53:2593–2623

    Google Scholar 

  • Patten C, Barnes S-J, Mathez EA (2012) Textural variations in MORB sulfide droplets due to differences in crystallization history. Can Mineral 50:675–692

    Google Scholar 

  • Peate DW, Baker JA, Jakobsson SP, Waight TE, Kent AJR, Grassineau NV, Skovgaard AC (2009) Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment. Contrib Mineral Petrol 157:359–382

    Google Scholar 

  • Pedersen GBM, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Óskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB, Gallagher C, Askew R, Guðnason J, Moreland WM, Nikkola P, Reynolds HI, J Schmith (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geotherm Res 340:155–169

    Google Scholar 

  • Pietruszka AJ, Heaton DE, Marske JP, Garcia MO (2015) Two magma bodies beneath the summit of K¯ılauea Volcano unveiled by isotopically distinct melt deliveries from the mantle. Earth Planet Sci Lett 413:90–100

    Google Scholar 

  • Putirka K (1997) Magma transport at Hawaii: inferences based on igneous thermobarometry. Geology 25:69–72

    Google Scholar 

  • Putirka K (1999) Clinopyroxene+liquid equilibrium to 100 kbar and 2450 K. Contrib Mineral Petrol 135:151–163

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Google Scholar 

  • Putirka KD, Johnson M, Kinzler RJ, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Miner Petrol 123:92–108

    Google Scholar 

  • Putirka K, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Miner 88:1542–1554

    Google Scholar 

  • Rae ASP, Edmonds M, Maclennan J, Morgan D, Houghton B, Hartley ME, Sides I (2016) Time scales of magma transport and mixing at Kīlauea Volcano, Hawai‘i. Geology 44(6):463–466

    Google Scholar 

  • Riel B, Milillo P, Simons M, Lundgren P, Kanamori H, Samsonov S (2015) The collapse of Bárðarbunga caldera, Iceland. Geophys J Int 202:446–453

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Google Scholar 

  • Ruch J, Wang T, Xu W, Hensch M, Jónsson S (2016) Oblique rift opening revealed by reoccurring magma injection in cental Iceland. Nat Commun 7:12352. https://doi.org/10.1038/ncomms12352

    Google Scholar 

  • Sakai H, Gunnlaugsson E, Tomasson J, Rouse JE (1980) Sulfur isotope systematics in Icelandic geothermal systems and influence of seawater circulation at Reykjanes. Geochim Cosmochim Acta 44:1223–1231

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst. https://doi.org/10.1029/2003GC000597 (ISSN: 1525-2027)

    Google Scholar 

  • Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61(1):633–677

    Google Scholar 

  • Shorttle O, Maclennan J (2011) Compositional trends of Icelandic basalts: implications for short-length scale lithological heterogeneity in mantle plumes. Geochem Geophys Geosyst. https://doi.org/10.1029/2011GC003748

    Google Scholar 

  • Shorttle O, Moussallam Y, Hartley ME, Maclennan J, Edmonds M, Murton B (2015) Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust’s role in the solid Earth oxygen cycle. Earth Planet Sci Lett 427:272–285

    Google Scholar 

  • Sigmarsson O, Halldorsson SA (2015) Delimiting Bárðarbunga and Askja volcanic systems with Sr-and Nd-isotope ratios. Jökull 65:17–27

    Google Scholar 

  • Sigmarsson O, Condomines M, Gronvold K, Thordarson T (1991) Extreme magma homogeneity in the 1783–84 Lakagigar eruption—origin of a large volume of evolved basalt in Iceland. Geophys Res Lett 18(12):2229–2232

    Google Scholar 

  • Sigmarsson O, Karlsson HR, Larsen G (2000) The 1996 and 1998 subglacial eruptions beneath the Vatnajokull ice sheet in Iceland: contrasting geochemical and geophysical inferences on magma migration. Bull Volcanol 61(7):468–476

    Google Scholar 

  • Sigmarsson O, Vlastelic I, Andreasen R, Bindeman I, Devidal J-L, Moune S, Keiding JK, Larsen G, Höskuldsson A, Thordarson Th (2011) Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2:271–281

    Google Scholar 

  • Sigmarsson O et al (2013) The sulfur budget of the 2011 Grímsvötn eruption, Iceland. Geophys Res Lett 40:1–6

    Google Scholar 

  • Sigmundsson F (2016) New insights into magma plumbing along rift systems from detailed observations of eruptive behavior at Axial volcano, Geophys Res Lett 43:12423–12427. https://doi.org/10.1002/2016GL071884

    Google Scholar 

  • Sigmundsson F, Hooper A, Hreinsdóttir S, Vogfjörd KS, Ófeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB, Drouin V, Árnadóttir T, Jónsdóttir K, Gudmundsson MT, Högnadóttir T, Fridriksdóttir HM, Hensch M, Einarsson P, Magnússon E, Samsonov S, Brandsdóttir B, White RS, Ágústsdóttir T, Greenfield T, Grenn RG, Hjartardóttir ÁR, Pedersen R, Bennett RA, Geirsson H, LaFemina P, Björnsson H, Pálsson F, Sturkell E, Bean CJ, Möllhoff M, Braiden AK, Eibl EPS (2015) Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517:191–195

    Google Scholar 

  • Sinton J, Grönvold K, Sæmundsson K (2005) Postglacial eruptive history of the Western Volcanic Zone Iceland. Geochem Geophys Geosyst. https://doi.org/10.1029/2005GC001021

    Google Scholar 

  • Skulski T, Minarik W, Watson EB (1994) High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem Geol 117:127–147

    Google Scholar 

  • Slater L, McKenzie D, Grönvold K, Shimizu N (2001) Melt generation and movement beneath Theistareykir, NE Iceland. J Petrol 42:321–354

    Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyishevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Google Scholar 

  • Steinthorsson S, Hardarson BS, Ellam RM, Larsen G (2000) Petrochemistry of the Gjalp-1996 subglacial eruption, Vatnajokull, SE Iceland. J Volcanol Geoth Res 98(1–4):79–90

    Google Scholar 

  • Stone WE. Fleet ME (1991) Nickel–copper sulfides from the 1959 eruption of Kilauea Volcano, Hawaii: contrasting compositions and phase relations in eruption pumice and Kilauea Iki lava lake. Am Mineral 76:1363–1372

    Google Scholar 

  • Svavarsdóttir SI, Halldórsson SA, Guðfinnsson GH (2017) Geochemistry and petrology of Holocene lavas in the Bárðardalur region, N-Iceland. Part I: geochemical constraints on source provenance. Jökull 67:17–42

    Google Scholar 

  • Tan Y-J, Tolstoy M, Waldhauser F, Wilcock WSD (2016) Dynamics of a seafloor spreading episode at the East Pacific Rise. Nature. https://doi.org/10.1038/nature20116

    Google Scholar 

  • Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Act 68:361–386

    Google Scholar 

  • Thirlwall MF, Gee MAM, Lowry D, Mattey DP, Murton BJ, Taylor RN (2006) Low d18O in the Icelandic mantle and its origins: evidence from Reykjanes Ridge and Icelandic lavas. Geochim Cosmochim Acta 70:993–1019

    Google Scholar 

  • Thórarinsson S, Sigvaldason GE (1972) Trollagígar og Tröllahraun (The Trollagígar eruption 1862–1864). Jökull 22:12–26

    Google Scholar 

  • Torssander P (1988) Sulfur isotope ratios of Icelandic lava incrustations and volcanic gases. J Volcanol Geotherm Res 35:227–235

    Google Scholar 

  • Torssander P (1989) Sulfur isotope ratios of Icelandic rocks. Contrib Mineral Petrol 102:18–23

    Google Scholar 

  • Valley JW, Kitchen N, Kohn NJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59(24):5223–5231

    Google Scholar 

  • Vlastélic I, Pietruszka AJ (2015) A review of the recent geochemical evolution of piton de la fournaise volcano (1927–2010). In: Bachelery P et al (eds) Active volcanoes of the southwest Indian ocean, active volcanoes of the world. Springer, Berlin, Heidelberg, pp 185–202

    Google Scholar 

  • Welsch B, Hammer J, Baronnet A, Jacob S, Hellebrand E, Sinton J (2016) Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. CMP 171:6. https://doi.org/10.1007/s00410-015-1213-9

    Google Scholar 

  • Whitehouse MJ (2013) Multiple sulfur isotope determination by SIMS: evaluation of reference sulfides for ∆33S with observations and a case study on the determination of ∆36S. Geostand. Geoanal Res 37(1):19–33

    Google Scholar 

  • Winpenny B, Maclennan J (2014) Short length scale oxygen isotope heterogeneity in the Icelandic mantle: evidence from plagioclase compositional zones. J Petrol 55:2537–2566

    Google Scholar 

  • Wright TJ, Sigmundsson F, Pagli C, Belachew M, Hamling IJ, Brandsdóttir B, Keir D, Pedersen R, Ayele A, Ebinger C, Einarsson P, Lewi E, Calais E (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat Geosci 5:242–250

    Google Scholar 

  • Yang HJ, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine–plagioclase–augite saturated melts from 0.001 to 10 kbar. Contrib Mineral petrol 124:1–24

    Google Scholar 

  • Zellmer GF, Rubin KH, Grönvold K, Jurado-Chichay Z (2008) On the recent bimodal magmatic processes and their rates in the Torfajökull-Veidivötn area, Iceland. Earth Planet Sci Lett 269:388–398s

    Google Scholar 

Download references

Acknowledgements

We thank Guðrún Sverrisdóttir, Gylfi Sigurðsson, Sigríður Inga Svavarsdóttir and Jóhann Gunnarsson Robin for lab assistance in Reykjavík and Bergrún A. Óladóttir and Ármann Höskuldsson for their contribution to the fieldwork. Funding for analytical work in Reykjavík was provided by the Research Fund of the University of Iceland and the Icelandic government through the Civil Protection Department of the National Commissioner of the Icelandic Police. The NordSIMS facility is a joint Nordic infrastructure funded by the research funding agencies of Denmark, Norway, Sweden and the University of Iceland. This is NordSIMS contribution 565. MH acknowledges support from NERC Grant NE/M021130/1; DAN acknowledges support from the Alexander von Humboldt Foundation and the German Research Foundation (DFG; NE 2097/1-1) and DWP acknowledges support from NSF Grant #EAR1550415. The LANDSAT image was made available by the U.S. Geological Survey. We gratefully acknowledge constructive and thoughtful comments by an anonymous reviewer, Aaron Pietruszka and the editor Othmar Müntener that all helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sæmundur A. Halldórsson.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 220 KB)

Supplementary material 2 (PDF 925 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halldórsson, S.A., Bali, E., Hartley, M.E. et al. Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage. Contrib Mineral Petrol 173, 64 (2018). https://doi.org/10.1007/s00410-018-1487-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1487-9

Keywords

Navigation