Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage

  • Sæmundur A. HalldórssonEmail author
  • Enikő Bali
  • Margaret E. Hartley
  • David A. Neave
  • David W. Peate
  • Guðmundur H. Guðfinnsson
  • Ilya Bindeman
  • Martin J. Whitehouse
  • Morten S. Riishuus
  • Gro B. M. Pedersen
  • Sigurður Jakobsson
  • Rob Askew
  • Catherine R. Gallagher
  • Esther R. Guðmundsdóttir
  • Jónas Gudnason
  • William M. Moreland
  • Birgir V. Óskarsson
  • Paavo Nikkola
  • Hannah I. Reynolds
  • Johanne Schmith
  • Thorvaldur Thordarson
Original Paper


The 2014–2015 Holuhraun fissure eruption provided a rare opportunity to study in detail the magmatic processes and magma plumbing system dynamics during a 6-month-long, moderate- to large-volume basaltic fissure eruption. In this contribution, we present a comprehensive dataset, including major and trace elements of whole-rock and glassy tephra samples, mineral chemistry, and radiogenic and oxygen isotope analyses from an extensive set of samples (n = 62) that were collected systematically in several field campaigns throughout the entire eruptive period. We also present the first detailed chemical and isotopic characterization of magmatic sulfides from Iceland. In conjunction with a unique set of geophysical data, our approach provides a detailed temporal and spatial resolution of magmatic processes before and during this eruption. The 2014–2015 Holuhraun magma is compositionally indistinguishable from recent basalts erupted from the Bárðarbunga volcanic system, consistent with seismic observations for magma ascent close to the Bárðarbunga central volcano, followed by dyke propagation to the Holuhraun eruption site. Whole-rock elemental and isotopic compositions are remarkably constant throughout the eruption. Moreover, the inferred depth of the magma reservoir tapped during the eruption is consistently 8 ± 5 km, in agreement with geodetic observations and melt inclusion entrapment pressures, but inconsistent with vertically extensive multi-tiered magma storage prior to eruption. The near constancy in the chemical and isotopic composition of the lava is consistent with the efficient homogenization of mantle-derived compositional variability. In contrast, occurrence of different mineral populations, including sulfide globules, which display significant compositional variability, requires a more complex earlier magmatic history. This may include sampling of heterogeneous mantle melts that mixed, crystallized and finally homogenized at mid- to lower-crustal conditions.


Iceland Volcanic eruptions Petrology Geochemistry 



We thank Guðrún Sverrisdóttir, Gylfi Sigurðsson, Sigríður Inga Svavarsdóttir and Jóhann Gunnarsson Robin for lab assistance in Reykjavík and Bergrún A. Óladóttir and Ármann Höskuldsson for their contribution to the fieldwork. Funding for analytical work in Reykjavík was provided by the Research Fund of the University of Iceland and the Icelandic government through the Civil Protection Department of the National Commissioner of the Icelandic Police. The NordSIMS facility is a joint Nordic infrastructure funded by the research funding agencies of Denmark, Norway, Sweden and the University of Iceland. This is NordSIMS contribution 565. MH acknowledges support from NERC Grant NE/M021130/1; DAN acknowledges support from the Alexander von Humboldt Foundation and the German Research Foundation (DFG; NE 2097/1-1) and DWP acknowledges support from NSF Grant #EAR1550415. The LANDSAT image was made available by the U.S. Geological Survey. We gratefully acknowledge constructive and thoughtful comments by an anonymous reviewer, Aaron Pietruszka and the editor Othmar Müntener that all helped to improve this manuscript.

Supplementary material

410_2018_1487_MOESM1_ESM.xlsx (221 kb)
Supplementary material 1 (XLSX 220 KB)
410_2018_1487_MOESM2_ESM.pdf (926 kb)
Supplementary material 2 (PDF 925 KB)


  1. Ágústsdóttir T, Woods J, Greenfield T, Green RG, White RS, Winder T, Brandsdóttir B, Steinthórsson S, Soosalu H (2016) Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dyke intrusion, central Iceland. Geophys Res Lett 43:1495–1503Google Scholar
  2. Bali E, Hartley ME, Halldórsson SA, Guðfinsson GH, Jakobsson S (2018) Melt inclusion constraints on volatile systematics and degassing history of the 2014–2015 Holuhraun eruption, Iceland. Contrib Mineral Petrol 173:9Google Scholar
  3. Bindeman IN (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69:445–478Google Scholar
  4. Bindeman IN, Sigmarsson O, Eiler J (2006) Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and Grimsvötn volcanic system. Earth Planet Sci Lett 245:245–259Google Scholar
  5. Bindeman IN, Gurenko A, Sigmarsson O, Chaussidon M (2008) Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochim Cosmochim Acta 72:4397–4420Google Scholar
  6. Bindeman IN, Gurenko A, Carley T, Miller C, Martin E, Sigmarsson O (2012) Insight into silicic magma petrogenesis in Iceland based on oxygen isotope diversity and disequilibria between zircon and magma. Terra Nova 24:227–232Google Scholar
  7. Breddam K (2002) Kistufell: primitive melt from the Iceland mantle plume. J Petrol 43:345–373Google Scholar
  8. Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JMD, Hauri EH (2013) Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496:490–493Google Scholar
  9. Carlson RL, Herrick CN (1990) Densities and porosities in the oceanic crust and their variations with depth and age. J Geophys Res Solid Earth 95(B6):9153–9170Google Scholar
  10. Chadwick WW Jr, Paduan JB, Clague DA, Dreyer BM, Merle SG, Bobbitt AM, Caress DW, Philip BT, Kelley DS, Nooner SL (2016) Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount. Geophys Res Lett. Google Scholar
  11. Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305(3–4):270–282Google Scholar
  12. Desmarais E, Segall P (2007) Transient deformation following the 30 January 1997 dike intrusion at Kīlauea volcano, Hawai’I. Bull Volcanol 69:353–363Google Scholar
  13. Eason DE, Sinton JM (2009) Lava shields and fissure eruptions of the Western Volcanic Zone, Iceland, evidence for magma chambers and crustal interaction. J Volcanol Geoth Res 186:331–348Google Scholar
  14. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364Google Scholar
  15. Eiler JM, Grönvold K, Kitchen N (2000) Oxygen isotope evidence for the origin of chemical variations in lavas from Theistareykir volcano in Iceland’s northern volcanic zone. Earth Planet Sci Lett 184:269–286Google Scholar
  16. Einarsson P, Sæmundsson K (1987) Earthquake epicenters 1982–1985 and volcanic systems in Iceland: a map. In: Sigfússon Þ (ed) Í hlutarins eðli, Festschrift for Þorbjörn Sigurgeirsson. Menningarsjóður, ReykjavíkGoogle Scholar
  17. Fleet ME, Stone WE (1990) Nickeliferous sulfides in xenoliths, olivine megacrysts and basaltic glass. Contrib Mineral Petrol 105:629–636Google Scholar
  18. Ford CE, Russell DG, Graven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–265Google Scholar
  19. Francis RD (1990) Sulfide globules in mid-ocean ridge basalts (MORB), and the effect of oxygen abundance in Fe–S–O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas. Chem Geol 85:199–213Google Scholar
  20. Garcia MO, Pietruszka A, Rhodes JM, Swanson D (2000) Magmatic processes during the prolonged Puu’u’O’o eruption of Kilauea volcano, Hawaii. J Petrol 41:967–990Google Scholar
  21. Gauthier P-J, Sigmarsson O, Gouhier M, Haddadi B, Moune S (2016) Elevated gas flux and trace metal degassing from the 2014–2015 fissure eruption at the Bárðarbunga volcanic system, Iceland. J Geophys Res 121:1610–1630Google Scholar
  22. Geiger H, Mattson T, Deegan FM, Troll VR, Burchardt S, Gudmundsson Ó, Tryggvason A, Krumbholz M, Harris C (2016) Magma plumbing of the 2014–2015 Holuhraun eruption, Iceland. Geochem Geophys Geosyst. Google Scholar
  23. Gíslason SR, Stefánsdóttir G, Pfeffer MA, Barsotti S, Jóhannsson Th, Galeczka I, Bali E, Sigmarsson O, Stefánsson A, Keller NS, Sigurdsson Á, Bergsson B, Galle B, Jacobo VC, Arenallo S, Aiuppa A, Jónasdóttir EB, Eiríksdóttir ES, Jakobsson S, Guðfinsson GH, Halldórsson SA, Gunnarsson H, Haddadi B, Jónsdóttir I, Thordarson Th, Riishuus M, Högnadóttir Th, Dürig T, Pedersen GBM, Höskuldsson Ám Gudmundsson MT (2015) Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem Persp Lett 1:84–93Google Scholar
  24. Gómez-Ulla A, Sigmarsson O, Gudfinnsson GH (2017) Trace element systematics of olivine from historical eruptions of Lanzarote, Canary Islands: constraints on mantle source and melting model. Chem Geol 449:99–111Google Scholar
  25. Goss AR et al (2010) Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N–9°56′N: implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochem Geophys Geosyst 11:Q05T09Google Scholar
  26. Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt (MORB). AGU Geophys Monogr 71:281–310Google Scholar
  27. Gudfinnsson GH, Presnall DC (2001) A pressure-independent geothermometer for primitive mantle melts. J Geophys Res 106:16205–16211Google Scholar
  28. Gudmundsdóttir ER, Óladóttir BA, Moreland W, Gudnason J (2016) Tephra in the effusive Bárðarbunga 2014–2015 eruption, Iceland. In: Nordic geological winter meeting. AbstractGoogle Scholar
  29. Gudmundsson MT, Jónsdóttir K, Hooper A, Holohan EP, Halldórsson SA, Ófeifsson BG, Cesca S, Vogfjörd KS, Sigmundsson F, Högnadóttir T, Einarsson P, Sigmarsson O, Jarosch AH, Jónasson K, Magnússon E, Hreinsdóttir S, Bagnardi M, Parks MM, Hjörleifsdóttir V, Pálsson F, Walter TR, Schöpfer MPJ, Heimann S, Reynolds HI, Sumont S, Bali E, Gudfinsson GH, Dahm T, Roberts MJ, Hensch M, Belart JMC, Spaans K, Jakobsson S, Gudmundsson GB, Fridriksdóttir HM, Drouin V, Dürig T, Aðalgeirsdóttir G, Riishuus MS, Pedersen GBM, van Boeckel T, Oddsson B, Pfeffer MA, Barsotti S, Bergsson B, Donovan A, Burton MR, Aiuppa A (2016) Gradual caldera collapse at Bárdarbinga volcano, Iceland, regulated by lateral magma outflow. Science 353:262. Google Scholar
  30. Halldórsson SA, Oskarsson N, Grönvold K, Sigurdsson G, Sverrisdottir G, Steinthorsson S (2008) Isotopic heterogeneity of the Thorsa lava—implications for mantle sources and crustal processes within the Eastern Rift Zone. Chem Geol 255:305–316Google Scholar
  31. Hartley ME, Thordarson T (2013) The 1874–1876 volcano-tectonic episode at Askja, North Iceland: lateral flow revisited. Geochem Geophys Geosyst 14:2286–2309Google Scholar
  32. Hartley ME, Thordarson T, Fitton JG, and EIMF (2013) Oxygen isotopes in melt inclusions and glasses from the Askja volcanic system, North Iceland. Geochim Cosmochim Acta 123:55–73Google Scholar
  33. Hartley ME, Morgan DJ, Maclennan J, Edmonds M, Thordarson T (2016) Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe–Mg diffusion in olivine. Earth Planet Sci Lett 439:58–70Google Scholar
  34. Hartley ME, Shorttle O, Maclennan J, Moussallam Y, Edmonds M (2017) Olivine-hosted melt inclusions as an archive of redox heterogeneity in magmatic systems. Earth Planet Sci Lett 491:192–205Google Scholar
  35. Hartley ME, Bali E, Maclennan J, Neave DA, Halldórsson SA (2018) Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contrib Mineral Petrol 173:10Google Scholar
  36. Hattori K, Muehlenbachs K (1982) Oxygen isotope ratios of the Icelandic crust. J Geophys Res 87:6559–6565Google Scholar
  37. Hauri EH, Papineau D, Wang J, Hillion F (2016) High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chem Geol 420:148–161Google Scholar
  38. Helz RT, Clague DA, Sisson TW, Thornber CR (2014) Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes. In: Poland MP, Takahashi TJ, Landowski CM (eds) Characteristics of Hawaiian volcanoes. U.S. Geological Survey Professional Paper 1801, GoldenGoogle Scholar
  39. Hemond C, Arndt NT, Lichtenstein U, Hofmann AW, Oskarsson N, Steinthorsson S (1993) The heterogeneous Iceland plume: Nd–Sr–O isotopes and trace element constraints. J Geophys Res 98:15833–15850Google Scholar
  40. Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146Google Scholar
  41. Herzberg C, Vidito C, Starkey NA (2016) Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks. Am Miner 101:1952–1966Google Scholar
  42. Hudson TS, White RS, Greenfield T, Ágústsdóttir T, Brisbourne A, Green RG (2017) Deep crustal melt plumbing of Bárðarbunga volcano, Iceland. Geophys Res Lett 44(17):8785–8794Google Scholar
  43. Jakobsson SP (1979) Outline of the petrology of Iceland. Jökull 29:57–73Google Scholar
  44. Jakobsson SP, Jónasson K, Sigurdsson IA (2008) The three igneous rock series of Iceland. Jökull 58:117–138Google Scholar
  45. Jónsson Ó (1945) Ódáðahraun I–III. Bókaútgáfan Norðri, AkureyriGoogle Scholar
  46. Jude-Eton TC (2013) Eruption dynamics within an emergent subglacial setting: a case study of the 2004 eruption of Grímsvötn volcano, Iceland. Unpublished Ph.D. Dissertation. University of EdinburghGoogle Scholar
  47. Keith M, Haase KM, Klemd R, Schwarz-Schampera U, Franke H (2017) Systematic variations in magmatic sulphide chemistry from mid-ocean ridges, back-arc basins and island arcs. Chem Geol 451:67–77Google Scholar
  48. Kempton PD, Fitton JG, Saunders AD, Nowell GM, Taylor RN, Hardarson BS, Pearson G (2000) The Iceland plume in space and time: a Sr–Nd–Pb–Hf study of the North Atlantic rifted margin. Earth Planet Sci Lett 177:255–271Google Scholar
  49. Kita NT, Huberty JM, Kozdon R, Beard BL, Valley JW (2011) High precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation. Surf Interface Anal 43:427–431Google Scholar
  50. Kokfelt TF, Hoernle K, Hauff F, Fiebig J, Werner R, Garbe-Schönberg D (2006) Combined trace element and Pb–Nd–Sr–O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume. J Petrol 47:1705–1749Google Scholar
  51. Koornneef JM, Stracke A, Bourdon B, Meier MA, Jochum KP, Stoll B, Grönvold K (2012) Melting of a two-component source beneath Iceland. J Petrol 53:127–157Google Scholar
  52. Kullerud G, Yund RA, Moh G (1969) Phase relations in the Cu–Fe–S and Cu–Ni–S systems. In: Wilson HDB (ed) Magmatic Ore Deposits, Economic Geology Monograph, vol 4. Economic Geology Publishing Company, Lancanster, PA, pp 323–343Google Scholar
  53. Kuritani T, Yokoyama T, Kitagawa H, Kobayashi K, Nakamura E (2011) Geochemical evolution of historical lavas from Askja volcano, Iceland: implications for mechanisms and timescales of magmatic differentiation. Geochim Cosmochim Acta 75:570–587Google Scholar
  54. Labidi J, Cartigny P (2016) Negligible sulfur isotope fractionation during partial melting: evidence from Garrett transform fault basalts and implications for the late-veneer and the hadean matte. Earth Planet Sci Lett 451:196–207Google Scholar
  55. Labidi J, Cartigny P, Hamelin C, Moreira M, Dosso L (2014) Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific-Antarctic ridge basalts: a record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochim Cosmochim Acta 133:47–67Google Scholar
  56. Langmuir C, Bender J, Bence A, Hanson G, Taylor S (1977) Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge. Earth Planet Sci Lett 36:133–156Google Scholar
  57. Li Y, Audétat A (2015) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett 355–356:327–340Google Scholar
  58. Maclennan J (2008) Concurrent mixing and cooling of melts under Iceland. J Petrol 49/11:1931–1953Google Scholar
  59. Maclennan J, McKenzie D, Hilton F, Grönvold K, Shimizu N (2003) Geochemical variability in a single flow from northern Iceland. J Geophys Res 108:B1. Google Scholar
  60. Manning CJ, Thirlwall MF (2014) Isotopic evidence for interaction between Öraefajökull mantle and the Eastern Rift Zone, Iceland. Contrib Mineral Petrol 167:959Google Scholar
  61. Matzen AK, Baker MB, Beckett JR, Stolper EM (2013) The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. J Petrol 54:2521–2545Google Scholar
  62. Mollo S, Putirka K, Misiti V, Soligo M, Scarato P (2013) A new test for equilibrium based on clinopyroxene-melt pairs: clues on the solidificaition temperatures of Etnean alkaline melts at post-eruptive conditions. Chem Geol 352:92–100Google Scholar
  63. Momme P, Oskarsson N, Keys RR (2003) Platinum-group elements in the Icelandic rift system: melting processes and mantle sources beneath Iceland. Chem Geol 196:209–234Google Scholar
  64. Moune S, Sigmarsson O, Thordarson T, Gauthier P-J (2007) Recent volatile evolution in the magmatic system of Hekla volcano, Iceland. Earth Planet Sci Lett 255/3:373–389Google Scholar
  65. Muehlenbachs K, Anderson AT, Sigvaldason GE (1974) Low-18O basalts from Iceland. Geochim Cosmochim Acta 38:577–588Google Scholar
  66. Namur O, Charlier B, Toplis MJ, Auwera JV (2012) Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm. Contrib Mineral Petrol 163:133–150Google Scholar
  67. Neave DA, Putirka K (2017) Clinopyroxene-liquid barometry revisited: magma storage pressures under Icelandic rift zones. Am Miner 102:777–794Google Scholar
  68. Neave DA, Passmore E, Maclennan J, Fitton G, Thordarson T (2013) Crystal-melt relationships and the record of deep mixing and crystallization in the AD 1783 Laki eruption. Icel J Petrol 54:1661–1690Google Scholar
  69. Neave DA, Maclennan J, Hartley ME, Edmonds M, Thordarson T (2014) Crystal storage and transfer in basaltic systems: the Skuggafjöll eruption, Iceland. J Petrol 12:2311–2346Google Scholar
  70. Neave DA, Buisman I, Maclennan J (2017) Continuous mush disaggregation during the long-lasting Laki fissure eruption. Am Miner 102:2007–2021Google Scholar
  71. Nikolaev GS, Ariskin AA, Barmina GS, Nazarov MA, Almeev RR (2016) Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel. Geochem Int 54:301–320Google Scholar
  72. Óladóttir BA (2009) Holocene eruption history and magmatic evolution of the subglacial volcanoes, Grímsvötn, Bárdarbunga and Kverkfjöll beneath Vatnajökull, Iceland. Unpublished Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand and University of Iceland, ReykjavíkGoogle Scholar
  73. Pagli C, Sigmundsson F, Pedersen R, Einarsson P, Árnadóttir Th, Feigl KL (2007) Crustal deformation associated with the 1996 Gjálp subglacial eruption, Iceland: InSAR studies in affected areas adjacent to the Vatnajökull ice cap. Earth Planet Sci Lett 259:24–33Google Scholar
  74. Passmore E, Maclennan J, Fitton G, Thordarson T (2012) Mush disaggregation in basaltic magma chambers from the AD 1783 Laki eruption. J Petrol 53:2593–2623Google Scholar
  75. Patten C, Barnes S-J, Mathez EA (2012) Textural variations in MORB sulfide droplets due to differences in crystallization history. Can Mineral 50:675–692Google Scholar
  76. Peate DW, Baker JA, Jakobsson SP, Waight TE, Kent AJR, Grassineau NV, Skovgaard AC (2009) Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment. Contrib Mineral Petrol 157:359–382Google Scholar
  77. Pedersen GBM, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Óskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB, Gallagher C, Askew R, Guðnason J, Moreland WM, Nikkola P, Reynolds HI, J Schmith (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geotherm Res 340:155–169Google Scholar
  78. Pietruszka AJ, Heaton DE, Marske JP, Garcia MO (2015) Two magma bodies beneath the summit of K¯ılauea Volcano unveiled by isotopically distinct melt deliveries from the mantle. Earth Planet Sci Lett 413:90–100Google Scholar
  79. Putirka K (1997) Magma transport at Hawaii: inferences based on igneous thermobarometry. Geology 25:69–72Google Scholar
  80. Putirka K (1999) Clinopyroxene+liquid equilibrium to 100 kbar and 2450 K. Contrib Mineral Petrol 135:151–163Google Scholar
  81. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120Google Scholar
  82. Putirka KD, Johnson M, Kinzler RJ, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Miner Petrol 123:92–108Google Scholar
  83. Putirka K, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Miner 88:1542–1554Google Scholar
  84. Rae ASP, Edmonds M, Maclennan J, Morgan D, Houghton B, Hartley ME, Sides I (2016) Time scales of magma transport and mixing at Kīlauea Volcano, Hawai‘i. Geology 44(6):463–466Google Scholar
  85. Riel B, Milillo P, Simons M, Lundgren P, Kanamori H, Samsonov S (2015) The collapse of Bárðarbunga caldera, Iceland. Geophys J Int 202:446–453Google Scholar
  86. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289Google Scholar
  87. Ruch J, Wang T, Xu W, Hensch M, Jónsson S (2016) Oblique rift opening revealed by reoccurring magma injection in cental Iceland. Nat Commun 7:12352. Google Scholar
  88. Sakai H, Gunnlaugsson E, Tomasson J, Rouse JE (1980) Sulfur isotope systematics in Icelandic geothermal systems and influence of seawater circulation at Reykjanes. Geochim Cosmochim Acta 44:1223–1231Google Scholar
  89. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst. (ISSN: 1525-2027) Google Scholar
  90. Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61(1):633–677Google Scholar
  91. Shorttle O, Maclennan J (2011) Compositional trends of Icelandic basalts: implications for short-length scale lithological heterogeneity in mantle plumes. Geochem Geophys Geosyst. Google Scholar
  92. Shorttle O, Moussallam Y, Hartley ME, Maclennan J, Edmonds M, Murton B (2015) Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust’s role in the solid Earth oxygen cycle. Earth Planet Sci Lett 427:272–285Google Scholar
  93. Sigmarsson O, Halldorsson SA (2015) Delimiting Bárðarbunga and Askja volcanic systems with Sr-and Nd-isotope ratios. Jökull 65:17–27Google Scholar
  94. Sigmarsson O, Condomines M, Gronvold K, Thordarson T (1991) Extreme magma homogeneity in the 1783–84 Lakagigar eruption—origin of a large volume of evolved basalt in Iceland. Geophys Res Lett 18(12):2229–2232Google Scholar
  95. Sigmarsson O, Karlsson HR, Larsen G (2000) The 1996 and 1998 subglacial eruptions beneath the Vatnajokull ice sheet in Iceland: contrasting geochemical and geophysical inferences on magma migration. Bull Volcanol 61(7):468–476Google Scholar
  96. Sigmarsson O, Vlastelic I, Andreasen R, Bindeman I, Devidal J-L, Moune S, Keiding JK, Larsen G, Höskuldsson A, Thordarson Th (2011) Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2:271–281Google Scholar
  97. Sigmarsson O et al (2013) The sulfur budget of the 2011 Grímsvötn eruption, Iceland. Geophys Res Lett 40:1–6Google Scholar
  98. Sigmundsson F (2016) New insights into magma plumbing along rift systems from detailed observations of eruptive behavior at Axial volcano, Geophys Res Lett 43:12423–12427. Google Scholar
  99. Sigmundsson F, Hooper A, Hreinsdóttir S, Vogfjörd KS, Ófeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB, Drouin V, Árnadóttir T, Jónsdóttir K, Gudmundsson MT, Högnadóttir T, Fridriksdóttir HM, Hensch M, Einarsson P, Magnússon E, Samsonov S, Brandsdóttir B, White RS, Ágústsdóttir T, Greenfield T, Grenn RG, Hjartardóttir ÁR, Pedersen R, Bennett RA, Geirsson H, LaFemina P, Björnsson H, Pálsson F, Sturkell E, Bean CJ, Möllhoff M, Braiden AK, Eibl EPS (2015) Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517:191–195Google Scholar
  100. Sinton J, Grönvold K, Sæmundsson K (2005) Postglacial eruptive history of the Western Volcanic Zone Iceland. Geochem Geophys Geosyst. Google Scholar
  101. Skulski T, Minarik W, Watson EB (1994) High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem Geol 117:127–147Google Scholar
  102. Slater L, McKenzie D, Grönvold K, Shimizu N (2001) Melt generation and movement beneath Theistareykir, NE Iceland. J Petrol 42:321–354Google Scholar
  103. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyishevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417Google Scholar
  104. Steinthorsson S, Hardarson BS, Ellam RM, Larsen G (2000) Petrochemistry of the Gjalp-1996 subglacial eruption, Vatnajokull, SE Iceland. J Volcanol Geoth Res 98(1–4):79–90Google Scholar
  105. Stone WE. Fleet ME (1991) Nickel–copper sulfides from the 1959 eruption of Kilauea Volcano, Hawaii: contrasting compositions and phase relations in eruption pumice and Kilauea Iki lava lake. Am Mineral 76:1363–1372Google Scholar
  106. Svavarsdóttir SI, Halldórsson SA, Guðfinnsson GH (2017) Geochemistry and petrology of Holocene lavas in the Bárðardalur region, N-Iceland. Part I: geochemical constraints on source provenance. Jökull 67:17–42Google Scholar
  107. Tan Y-J, Tolstoy M, Waldhauser F, Wilcock WSD (2016) Dynamics of a seafloor spreading episode at the East Pacific Rise. Nature. Google Scholar
  108. Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Act 68:361–386Google Scholar
  109. Thirlwall MF, Gee MAM, Lowry D, Mattey DP, Murton BJ, Taylor RN (2006) Low d18O in the Icelandic mantle and its origins: evidence from Reykjanes Ridge and Icelandic lavas. Geochim Cosmochim Acta 70:993–1019Google Scholar
  110. Thórarinsson S, Sigvaldason GE (1972) Trollagígar og Tröllahraun (The Trollagígar eruption 1862–1864). Jökull 22:12–26Google Scholar
  111. Torssander P (1988) Sulfur isotope ratios of Icelandic lava incrustations and volcanic gases. J Volcanol Geotherm Res 35:227–235Google Scholar
  112. Torssander P (1989) Sulfur isotope ratios of Icelandic rocks. Contrib Mineral Petrol 102:18–23Google Scholar
  113. Valley JW, Kitchen N, Kohn NJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59(24):5223–5231Google Scholar
  114. Vlastélic I, Pietruszka AJ (2015) A review of the recent geochemical evolution of piton de la fournaise volcano (1927–2010). In: Bachelery P et al (eds) Active volcanoes of the southwest Indian ocean, active volcanoes of the world. Springer, Berlin, Heidelberg, pp 185–202Google Scholar
  115. Welsch B, Hammer J, Baronnet A, Jacob S, Hellebrand E, Sinton J (2016) Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. CMP 171:6. Google Scholar
  116. Whitehouse MJ (2013) Multiple sulfur isotope determination by SIMS: evaluation of reference sulfides for ∆33S with observations and a case study on the determination of ∆36S. Geostand. Geoanal Res 37(1):19–33Google Scholar
  117. Winpenny B, Maclennan J (2014) Short length scale oxygen isotope heterogeneity in the Icelandic mantle: evidence from plagioclase compositional zones. J Petrol 55:2537–2566Google Scholar
  118. Wright TJ, Sigmundsson F, Pagli C, Belachew M, Hamling IJ, Brandsdóttir B, Keir D, Pedersen R, Ayele A, Ebinger C, Einarsson P, Lewi E, Calais E (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat Geosci 5:242–250Google Scholar
  119. Yang HJ, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine–plagioclase–augite saturated melts from 0.001 to 10 kbar. Contrib Mineral petrol 124:1–24Google Scholar
  120. Zellmer GF, Rubin KH, Grönvold K, Jurado-Chichay Z (2008) On the recent bimodal magmatic processes and their rates in the Torfajökull-Veidivötn area, Iceland. Earth Planet Sci Lett 269:388–398sGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sæmundur A. Halldórsson
    • 1
    Email author
  • Enikő Bali
    • 1
  • Margaret E. Hartley
    • 2
  • David A. Neave
    • 3
  • David W. Peate
    • 4
  • Guðmundur H. Guðfinnsson
    • 1
  • Ilya Bindeman
    • 5
  • Martin J. Whitehouse
    • 6
  • Morten S. Riishuus
    • 1
    • 7
  • Gro B. M. Pedersen
    • 1
  • Sigurður Jakobsson
    • 1
  • Rob Askew
    • 1
  • Catherine R. Gallagher
    • 1
  • Esther R. Guðmundsdóttir
    • 1
  • Jónas Gudnason
    • 1
  • William M. Moreland
    • 1
  • Birgir V. Óskarsson
    • 1
  • Paavo Nikkola
    • 1
  • Hannah I. Reynolds
    • 1
  • Johanne Schmith
    • 1
  • Thorvaldur Thordarson
    • 1
  1. 1.Nordic Volcanological Center, Institute of Earth SciencesUniversity of IcelandReykjavíkIceland
  2. 2.School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
  3. 3.Institut für MineralogieLeibniz Universität HannoverHannoverGermany
  4. 4.Department of Earth and Environmental SciencesUniversity of IowaIowa CityUSA
  5. 5.Department of Earth SciencesUniversity of OregonEugeneUSA
  6. 6.Department of GeosciencesSwedish Museum of Natural HistoryStockholmSweden
  7. 7.Faroese Geological SurveyTórshavnFaroe Islands

Personalised recommendations