Advertisement

Cu diffusivity in granitic melts with application to the formation of porphyry Cu deposits

  • Huaiwei Ni
  • Huifeng Shi
  • Li Zhang
  • Wan-Cai Li
  • Xuan Guo
  • Ting Liang
Original Paper
  • 197 Downloads

Abstract

We report new experimental data of Cu diffusivity in granite porphyry melts with 0.01 and 3.9 wt% H2O at 0.15–1.0 GPa and 973–1523 K. A diffusion couple method was used for the nominally anhydrous granitic melt, whereas a Cu diffusion-in method using Pt95Cu5 as the source of Cu was applied to the hydrous granitic melt. The diffusion couple experiments also generate Cu diffusion-out profiles due to Cu loss to Pt capsule walls. Cu diffusivities were extracted from error function fits of the Cu concentration profiles measured by LA-ICP-MS. At 1 GPa, we obtain \({D_{{\text{Cu, dry, 1 GPa}}}}=\exp \left[ {( - {\text{13.89}} \pm {\text{0.42}}) - \frac{{{\text{12878}} \pm {\text{540}}}}{T}} \right],\) and \({D_{{\text{Cu, 3}}{\text{.9 wt\% }}{{\text{H}}_{\text{2}}}{\text{O}},{\text{ 1 GPa}}}}=\exp \left[ {( - 16.31 \pm 1.30) - \frac{{{\text{8148}} \pm {\text{1670}}}}{T}} \right],\) where D is Cu diffusivity in m2/s and T is temperature in K. The above expressions are in good agreement with a recent study on Cu diffusion in rhyolitic melt using the approach of Cu2S dissolution. The observed pressure effect over 0.15–1.0 GPa can be described by an activation volume of 5.9 cm3/mol for Cu diffusion. Comparison of Cu diffusivity to alkali diffusivity and its variation with melt composition implies fourfold-coordinated Cu+ in silicate melts. Our experimental results indicate that in the formation of porphyry Cu deposits, the diffusive transport of magmatic Cu to sulfide liquids or fluid bubbles is highly efficient. The obtained Cu diffusivity data can also be used to assess whether equilibrium Cu partitioning can be reached within certain experimental durations.

Keywords

Cu diffusivity Granitic melt Porphyry Cu deposits 

Notes

Acknowledgements

We thank Xiaolin Xiong for providing capsule material and two anonymous reviewers for constructive comments. This study was supported by the Natural Science Foundation of China (41590622, 41473058, 41721002), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB18000000), the 111 Project of Ministry of Education, China, and the Fundamental Research Funds for the Central Universities of China (WK2080000102).

References

  1. Bai TB, van Groos AFK (1994) Diffusion of chlorine in granitic melts. Geochim Cosmochim Acta 58:113–123CrossRefGoogle Scholar
  2. Baker LL, Rutherford MJ (1996) Sulfur diffusion in rhyolite melts. Contrib Mineral Petrol 123:335–344CrossRefGoogle Scholar
  3. Ballard JR (2001) A comparative study between the geochemistry of ore-bearing and barren calc-alkaline intrusions. Ph.D Thesis. The Australian National UniversityGoogle Scholar
  4. Candela PA, Holland HD (1986) A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: the origin of porphyry-type ore deposits. Econ Geol 81:1–19CrossRefGoogle Scholar
  5. Carroll MR, Stolper EM (1993) Noble gas solubilities in silicate melts and glasses: new experimental results for argon and the relationship between solubility and ionic porosity. Geochim Cosmochim Acta 57:5039–5051CrossRefGoogle Scholar
  6. Crank J (1975) The mathematics of diffusion. Clarendon Press Oxford, OxfordGoogle Scholar
  7. Du J, Corrales LR (2006) Structure, dynamics, and electronic properties of lithium disilicate melt and glass. J Chem Phys 125:114702CrossRefGoogle Scholar
  8. Fanara S, Sengupta P, Becker H-W, Rogalla D, Chakraborty S (2017) Diffusion across the glass transition in silicate melts: systematic correlations, new experimental data for Sr and Ba in calcium-aluminosilicate glasses and general mechanisms of ionic transport. J Non-Cryst Solids 455:6–16CrossRefGoogle Scholar
  9. Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61:1829CrossRefGoogle Scholar
  10. Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New YorkGoogle Scholar
  11. Guo X, Zhang L, Behrens H, Ni H (2016) Probing the status of felsic magma reservoirs: constraints from the P–T–H2O dependences of electrical conductivity of rhyolitic melt. Earth Planet Sci Lett 433:54–62CrossRefGoogle Scholar
  12. Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527CrossRefGoogle Scholar
  13. Huber C, Bachmann O, Vigneresse JL, Dufek J, Parmigiani A (2012) A physical model for metal extraction and transport in shallow magmatic systems. Geochem Geophys Geosyst 13:Q08003CrossRefGoogle Scholar
  14. Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–416CrossRefGoogle Scholar
  15. Jambon A (1982) Tracer diffusion in granitic melts: Experimental results for Na, K, Rb, Cs, Ca, Sr, Ba, Ce, Eu to 1300 °C and a model of calculation. J Geophys Res 87:10797–10810CrossRefGoogle Scholar
  16. Jambon A, Semet MP (1978) Lithium diffusion in silicate glasses of albite, orthoclase, and obsidian composition: an ion-microprobe determination. Earth Planet Sci Lett 37:445–450CrossRefGoogle Scholar
  17. Kesler SE, Wilkinson BH (2008) Earth’s copper resources estimated from tectonic diffusion of porphyry copper deposits. Geology 36:255–258CrossRefGoogle Scholar
  18. Leschik M, Heide G, Frischat GH (2004) Determination of H2O and D2O contents in rhyolitic glasses. Phys Chem Glasses 45:238–251Google Scholar
  19. Liu X, Xiong X, Audetat A, Li Y, Song M, Li L, Sun W, Ding X (2014) Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions. Geochim Cosmochim Acta 125:1–22CrossRefGoogle Scholar
  20. Liu X, Xiong X, Audetat A, Li Y (2015) Partitioning of Cu between mafic minerals, Fe–Ti oxides and intermediate to felsic melts. Geochim Cosmochim Acta 151:86–102CrossRefGoogle Scholar
  21. Lowry RK, Henderson P, Nolan J (1982) Tracer diffusions of some alkali, alkaline-earth and transition element ions in a basaltic and an andesitic melt, and the implications concerning melt structure. Contrib Mineral Petrol 80:254–261CrossRefGoogle Scholar
  22. Magaritz M, Hofmann AW (1978) Diffusion of Sr, Ba and Na in obsidian. Geochim Cosmochim Acta 42:595–605CrossRefGoogle Scholar
  23. Matsuda JI, Matsubara K, Yajima H, Yamamoto K (1989) Anomalous Ne enrichment in obsidians and Darwin glass: diffusion of noble gases in silica-rich glasses. Geochim Cosmochim Acta 53:3025–3033CrossRefGoogle Scholar
  24. Mungall JE, Dingwell DB, Chaussidon M (1999) Chemical diffusivities of 18 trace elements in granitoid melts. Geochim Cosmochim Acta 63:2599–2610CrossRefGoogle Scholar
  25. Mungall JE, Brenan JM, Godel B, Barnes SJ, Gaillard F (2015) Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nat Geosci 8:216–219CrossRefGoogle Scholar
  26. Mysen BO, Richet P (2005) Silicate glasses and melts: properties and structure. Elsevier, AmsterdamGoogle Scholar
  27. Nadeau O, Williams-Jones AE, Stix J (2010) Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. Nat Geosci 3:501–505CrossRefGoogle Scholar
  28. Ni H, Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high pressure data. Chem Geol 250:68–78CrossRefGoogle Scholar
  29. Ni P, Zhang Y (2016) Cu diffusion in a basaltic melt. Am Mineral 101:1474–1482CrossRefGoogle Scholar
  30. Ni H, Hui H, Steinle-Neumann G (2015) Transport properties of silicate melts. Rev Geophys 53:715–744CrossRefGoogle Scholar
  31. Ni P, Zhang Y, Simon A, Gagnon J (2017) Cu and Fe diffusion in rhyolitic melts during chalcocite “dissolution”: Implications for porphyry ore deposits and tektites. Am Mineral 102:1287–1301CrossRefGoogle Scholar
  32. Richards JP (2003) Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Econ Geol 98:1515–1533CrossRefGoogle Scholar
  33. Ripley EM, Brophy JG, Li C (2002) Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. Geochim Cosmochim Acta 66:2791–2800CrossRefGoogle Scholar
  34. Ripley EM, Brophy JG (1995) Solubility of copper in a sulfur-free mafic melt. Geochim Cosmochim Acta 59:5027–5030CrossRefGoogle Scholar
  35. Robb L (2005) Introduction to ore-forming processes. Blackwell Science Ltd, MaldenGoogle Scholar
  36. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRefGoogle Scholar
  37. Wallace PJ (2001) Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies. J Volcanol Geotherm Res 108:85–106CrossRefGoogle Scholar
  38. Withers AC, Behrens H (1999) Temperature induced changes in the NIR spectra of hydrous albitic and rhyolitic glasses between 300 and 100 K. Phys Chem Mineral 27:119–132CrossRefGoogle Scholar
  39. Xue X, Stebbins JF (1993) 23Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses. Phys Chem Miner 20:297–307CrossRefGoogle Scholar
  40. Zajacz Z, Candela PA, Piccoli PM, Wälle M, Sanchez-Valle C (2012) Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation. Geochim Cosmochim Acta 91:140–159CrossRefGoogle Scholar
  41. Zhang Y (2008) Geochemical kinetics. Princeton University Press, PrincetonGoogle Scholar
  42. Zhang Y (2015) Toward a quantitative model for the formation of gravitational magmatic sulfide deposits. Chem Geol 39:56–73CrossRefGoogle Scholar
  43. Zhang Y, Behrens H (2000) H2O diffusion in rhyolitic melts and glasses. Chem Geol 169:243–262CrossRefGoogle Scholar
  44. Zhang Y, Xu Z (1995) Atomic radii of noble gas elements in condensed phases. Am Mineral 80:670–675CrossRefGoogle Scholar
  45. Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72:311–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations