Advertisement

The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy)

  • Francesca Forni
  • Eleonora Petricca
  • Olivier Bachmann
  • Silvio Mollo
  • Gianfilippo De Astis
  • Monica Piochi
Original Paper
  • 372 Downloads

Abstract

Understanding the mechanisms responsible for the generation of chemical gradients in high-volume ignimbrites is key to retrieve information on the processes that control the maturation and eruption of large silicic magmatic reservoirs. Over the last 60 ky, two large ignimbrites showing remarkable zoning were emplaced during caldera-forming eruptions at Campi Flegrei (i.e., Campanian Ignimbrite, CI, ~ 39 ka and Neapolitan Yellow Tuff, NYT, ~ 15 ka). While the CI displays linear compositional, thermal and crystallinity gradients, the NYT is a more complex ignimbrite characterized by crystal-poor magmas ranging in composition from trachy-andesites to phonolites. By combining major and trace element compositions of matrix glasses and mineral phases from juvenile clasts located at different stratigraphic heights along the NYT pyroclastic sequence, we interpret such compositional gradients as the result of mixing/mingling between three different magmas: (1) a resident evolved magma showing geochemical characteristics of a melt extracted from a cumulate mush dominated by clinopyroxene, plagioclase and oxides with minor sanidine and biotite; (2) a hotter and more mafic magma from recharge providing high-An plagioclase and high-Mg clinopyroxene crystals and (3) a compositionally intermediate magma derived from remelting of low temperature mineral phases (i.e., sanidine and biotite) within the cumulate crystal mush. We suggest that the presence of a refractory crystal mush, as documented by the occurrence of abundant crystal clots containing clinopyroxene, plagioclase and oxides, is the main reason for the lack of erupted crystal-rich material in the NYT. A comparison between the NYT and the CI, characterized by both crystal-poor extracted melts and crystal-rich magmas representing remobilized portions of a “mature” (i.e., sanidine dominated) cumulate residue, allows evaluation of the capability of crystal mushes of becoming eruptible upon recharge.

Keywords

Zoned ignimbrites Caldera-forming eruption Cumulate melting Magma mixing Neapolitan Yellow Tuff Campi Flegrei 

Notes

Acknowledgements

We would like to thank Lukas Martin, Marcel Guillong and Oscar Laurent for their assistance during the microprobe and laser analyses. We are indebted to Vanni Tecchiato and Albrecht Von Quadt for helping with isotopic analyses. Gianluca Minin is gratefully acknowledged for providing access to the Galleria Borbonica. We are grateful to John Wolff, Ben Ellis and Dawid Szymanowski for thoughtful discussions which helped us to improve the manuscript. We express our gratitude to two anonymous referees for constructive reviews and to Othmar Müntener for the editorial efforts. This project has been supported by Swiss National Science Foundation Grant 200021_146268 to Olivier Bachmann.

Supplementary material

410_2018_1471_MOESM1_ESM.xlsx (851 kb)
Supplementary material 1 (XLSX 850 KB)
410_2018_1471_MOESM2_ESM.pdf (971 kb)
Supplementary material 2 (PDF 971 KB)
410_2018_1471_MOESM3_ESM.pdf (385 kb)
Supplementary material 3 (PDF 385 KB)

References

  1. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582.  https://doi.org/10.1093/Petrology/Egh019 CrossRefGoogle Scholar
  2. Bachmann O, Bergantz GW (2008) Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. Rev Miner Geochem 69:651–674 doi.  https://doi.org/10.2138/Rmg.2008.69.17 CrossRefGoogle Scholar
  3. Bachmann O, Deering CD, Lipman PW, Plummer C (2014) Building zoned ignimbrites by recycling silicic cumulates: insight from the 1000 km(3) Carpenter Ridge Tuff, CO. Contrib Miner Petr 167(6) doi: https://doi.org/10.1007/S00410-014-1025-3
  4. Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Miner Petr 98(2):224–256.  https://doi.org/10.1007/BF00402114 CrossRefGoogle Scholar
  5. Blake S (1981) Eruptions from zoned magma chambers. J Geol Soc 138(3):281–287.  https://doi.org/10.1144/gsjgs.138.3.0281 CrossRefGoogle Scholar
  6. Bohrson WA, Spera FJ, Fowler SJ, Belkin HE, De Vivo B, Rolandi G (2006) Petrogenesis of the Campanian Ignimbrite: implications for crystal-melt separation and open-system processes from major and trace elements and Th isotopic data. Volcanism in the Campania Plain: Vesuvius. Campi Flegrei Ignimbrites 9:249–288CrossRefGoogle Scholar
  7. Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75(3–4):183–219.  https://doi.org/10.1016/S0377-0273(96)00027-3 CrossRefGoogle Scholar
  8. D’Antonio M, Civetta L, Di Girolamo P (1999) Mantle source heterogeneity in the Campanian Region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity. Miner Petrol 67(3–4):163–192.  https://doi.org/10.1007/Bf01161520 CrossRefGoogle Scholar
  9. D’Antonio M, Tonarini S, Arienzo I, Civetta L, Di Renzo V (2007) Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. Geol Soc Am Spec Pap 418:203–220.  https://doi.org/10.1130/2007.2418(10) Google Scholar
  10. D’Oriano C, Landi P, Pimentel A, Zanon V (2017) Magmatic processes revealed by anorthoclase textures and trace element modeling: The case of the Lajes Ignimbrite eruption (Terceira Island, Azores). J Volcan Geotherm Res 347:44–63CrossRefGoogle Scholar
  11. de Silva SL (1991) Styles of zoning in central Andean ignimbrites; insights into magma chamber processes. Geol Soc Am Spec Pap 265:217–232.  https://doi.org/10.1130/SPE265-p217 Google Scholar
  12. de Silva SL, Wolff JA (1995) Zoned magma chambers—the influence of magma chamber geometry on sidewall convective fractionation. J Volcanol Geotherm Res 65(1–2):111–118CrossRefGoogle Scholar
  13. de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, di Cesare T, Di Vito MA, Fisher RV, Isaia R, Marotta E, Necco A, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):269–301.  https://doi.org/10.1016/S0377-0273(99)00039-6 CrossRefGoogle Scholar
  14. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Miner Petrol 73(1–3):47–65.  https://doi.org/10.1007/S007100170010 CrossRefGoogle Scholar
  15. de’Gennaro M, Cappelletti P, Langella A, Perrotta A, Scarpati C (2000) Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence. Contrib Miner Petr 139(1):17–35.  https://doi.org/10.1007/s004100050571 CrossRefGoogle Scholar
  16. Deering CD, Bachmann O, Vogel TA (2011) The Ammonia Tanks Tuff: erupting a melt-rich rhyolite cap and its remobilized crystal cumulate. Earth Planet Sc Lett 310(3–4):518–525 doi.  https://doi.org/10.1016/J.Epsl.2011.08.032 CrossRefGoogle Scholar
  17. Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera Italy) assessed by Ar-40/Ar-39 dating method. J Volcanol Geotherm Res 133(1–4):157–170.  https://doi.org/10.1016/S0377-0273(03)00396-2 CrossRefGoogle Scholar
  18. Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281(3–4):227–241.  https://doi.org/10.1016/J.Chemgeo.2010.12.010 CrossRefGoogle Scholar
  19. Di Vito MA, Arienzo I, Braia G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy). Bull Volcanol 73(3):295–320.  https://doi.org/10.1007/s00445-010-0417-0 CrossRefGoogle Scholar
  20. Druitt TH, Bacon CR (1989) Petrology of the zoned calcalkaline magma chamber of mount Mazama, Crater Lake, Oregon. Contrib Miner Petr 101(2):245–259.  https://doi.org/10.1007/Bf00375310 CrossRefGoogle Scholar
  21. Dufek J, Bachmann O (2010) Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology 38(8):687–690.  https://doi.org/10.1130/G30831.1 CrossRefGoogle Scholar
  22. Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: Rethinking chemical zonation in silicic magmas. Geology 28(7):603–606. https://doi.org/10.1130/0091-7613(2000)28<603:Micrcz>2.0.Co;2CrossRefGoogle Scholar
  23. Ellis BS, Bachmann O, Wolff JA (2014) Cumulate fragments in silicic ignimbrites: the case of the Snake River Plain. Geology 42(5):431–434.  https://doi.org/10.1130/G35399.1 CrossRefGoogle Scholar
  24. Evans BW, Hildreth W, Bachmann O, Scaillet B (2016) In defense of magnetite-ilmenite thermometry in the Bishop Tuff and its implication for gradients in silicic magma reservoirs. Am Miner 101(1–2):469–482CrossRefGoogle Scholar
  25. Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. Chem Geol 117(1–2):251–284CrossRefGoogle Scholar
  26. Fabbrizio A, Carroll MR (2008) Experimental constraints on the differentiation process and pre-emptive conditions in the magmatic system of Phlegraean Fields (Naples, Italy). J Volcanol Geotherm Res 171(1–2):88–102.  https://doi.org/10.1016/J.Jvolgeores.2007.11.002 CrossRefGoogle Scholar
  27. Fedele L, Scarpati C, Lanphere M, Melluso L, Morra V, Perrotta A, Ricci G, 2008. The Breccia Museo formation, Campi Flegrei, Southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. a 70:1189–1219Google Scholar
  28. Forni F, Bachmann O, Mollo S, De Astis G, Gelman SE, Ellis BS (2016) The origin of a zoned ignimbrite: insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy). Earth Planet Sci Lett 449:259–271.  https://doi.org/10.1016/j.epsl.2016.06.003 CrossRefGoogle Scholar
  29. Fowler SJ, Spera F, Bohrson W, Belkin HE, De Vivo B (2007) Phase equilibria constraints on the chemical and physical evolution of the campanian ignimbrite. J Petrol 48(3):459–493.  https://doi.org/10.1093/Petrology/Egl068 CrossRefGoogle Scholar
  30. Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890CrossRefGoogle Scholar
  31. Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Short Course Notes Geol Assoc Can 40:328–333Google Scholar
  32. Hildreth W (1981) Gradients in silicic magma chambers—implications for lithospheric magmatism. J Geophys Res 86(Nb11):153–192.  https://doi.org/10.1029/Jb086ib11p10153 CrossRefGoogle Scholar
  33. Hildreth W, Fierstein J (2000) Katmai volcanic cluster and the great eruption of 1912. Geol Soc Am Bull 112(10):1594–1620. https://doi.org/10.1130/0016-7606(2000)112<1594:Kvcatg>2.0.Co;2CrossRefGoogle Scholar
  34. Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48(5):951–999.  https://doi.org/10.1093/Petrology/Egm007 CrossRefGoogle Scholar
  35. Kennedy B, Stix J (2007) Magmatic processes associated with caldera collapse at Ossipee ring dyke, New Hampshire. Geol Soc Am Bull 119(1–2):3–17.  https://doi.org/10.1130/B25980.1 CrossRefGoogle Scholar
  36. Lipman PW (1966) Water pressures during differentiation and crystallization of some ash-flow magmas from Southern Nevada. Am J Sci 264(10):810CrossRefGoogle Scholar
  37. Lipman PW (1971) Iron-titanium oxide phenocrysts in compositionally zoned ash-flow sheets from Southern Nevada. J Geol 79(4):438–456CrossRefGoogle Scholar
  38. Lipman PW, Zimmerer MJ, McIntosh WC (2015) An ignimbrite caldera from the bottom up: exhumed floor and fill of the resurgent Bonanza caldera, Southern Rocky Mountain volcanic field, Colorado. Geosphere 11(6):1902–1947.  https://doi.org/10.1130/Ges01184.1 CrossRefGoogle Scholar
  39. Mahood G, Hildreth W (1983) Large partition-coefficients for trace-elements in high-silica rhyolites. Geoch Cosmoch Acta 47(1):11–30CrossRefGoogle Scholar
  40. Masotta M, Mollo S, Freda C, Gaeta M, Moore G (2013) Clinopyroxene-liquid thermometers and barometers specific to alkaline differentiated magmas. Contrib Miner Petr 166(6):1545–1561.  https://doi.org/10.1007/S00410-013-0927-9 CrossRefGoogle Scholar
  41. McDonough WF, Sun SS (1995) The Composition of the Earth. Chem Geol 120(3–4):223–253.  https://doi.org/10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  42. Melluso L, Morra V, Perrotta A, Scarpati C, Adabbo M (1995) The eruption of the Breccia Museo (Campi-Flegrei, Italy)—fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics. J Volcanol Geotherm Res 68:325–339CrossRefGoogle Scholar
  43. Mollo S, Masotta M (2014) Optimizing pre-eruptive temperature estimates in thermally and chemically zoned magma chambers. Chem Geol 368:97–103CrossRefGoogle Scholar
  44. Mollo S, Masotta M, Forni F, Bachmann O, De Astis G, Moore G, Scarlato P (2015) A K-feldspar-liquid hygrometer specific to alkaline differentiated magmas. Chem Geol 392:1–8.  https://doi.org/10.1016/j.chemgeo.2014.11.010 CrossRefGoogle Scholar
  45. Mollo S, Forni F, Bachmann O, Blundy JD, De Astis G, Scarlato P (2016) Trace element partitioning between clinopyroxene and trachy-phonolitic melts: a case study from the Campanian Ignimbrite (Campi Flegrei, Italy). Lithos 252–253:160–172 doi.  https://doi.org/10.1016/j.lithos.2016.02.024 CrossRefGoogle Scholar
  46. Orsi G, Dantonio M, Devita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption—eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53(1–4):275–287.  https://doi.org/10.1016/0377-0273(92)90086-S CrossRefGoogle Scholar
  47. Orsi G, Civetta L, Dantonio M, Digirolamo P, Piochi M (1995) Step-filling and development of a 3-layer magma chamber—the Neapolitan-Yellow-Tuff case-history. J Volcanol Geotherm Res 67(4):291–312. doi: https://doi.org/10.1016/0377-0273(94)00119-2 CrossRefGoogle Scholar
  48. Orsi G, DeVita S, diVito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74(3–4):179–214. doi: https://doi.org/10.1016/S0377-0273(96)00063-7 CrossRefGoogle Scholar
  49. Pabst S, Worner G, Civetta L, Tesoro R (2008) Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bull Volcanol 70(8):961–976.  https://doi.org/10.1007/S00445-007-0180-Z CrossRefGoogle Scholar
  50. Pamukcu AS, Carley TL, Gualda GAR, Miller CF, Ferguson CA (2013) The evolution of the peach spring giant magma body: evidence from accessory mineral textures and compositions, bulk pumice and glass geochemistry, and rhyolite-MELTS modeling. J Petrol 54:1109–1148.  https://doi.org/10.1093/petrology/egt007 CrossRefGoogle Scholar
  51. Pappalardo L, Civetta L, D’Antonio M, Deino A, Di Vito M, Orsi G, Carandente A, de Vita S, Isaia R, Piochi M (1999) Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J Volcanol Geotherm Res 91(2–4):141–166.  https://doi.org/10.1016/S0377-0273(99)00033-5 CrossRefGoogle Scholar
  52. Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002) Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J Petrol 43(8):1415–1434.  https://doi.org/10.1093/Petrology/43.8.1415 CrossRefGoogle Scholar
  53. Pappalardo L, Ottolini L, Mastrolorenzo G (2008) The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib Miner Petr 156(1):1–26.  https://doi.org/10.1007/S00410-007-0270-0 CrossRefGoogle Scholar
  54. Perrotta A, Scarpati C, Luongo G, Morra V (2006) The Campi Flegrei caldera boundary in the city of Naples. Volcanism in the Campania Plain: Vesuvius. Campi Flegrei Ignimbrites 9:85–96CrossRefGoogle Scholar
  55. Rosi M, Sbrana A (1987) Phlegrean fields: petrography. Quad Ricerca Sci 114:60–79Google Scholar
  56. Rowe MC, Ellis BS, Lindeberg A (2012) Quantifying crystallization and devitrification of rhyolites by means of X-ray diffraction and electron microprobe analysis. Am Miner 97(10):1685–1699 doi.  https://doi.org/10.2138/am.2012.4006 CrossRefGoogle Scholar
  57. Scarpati C, Cole P, Perrotta A (1993) The Neapolitan Yellow Tuff—a large-volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcanol 55(5):343–356 doi.  https://doi.org/10.1007/Bf00301145 CrossRefGoogle Scholar
  58. Shane P, Smith VC, Nairn I (2008) Millennial timescale resolution of rhyolite magma recharge at Tarawera volcano: insights from quartz chemistry and melt inclusions. Contrib Miner Petr 156(3):397–411.  https://doi.org/10.1007/S00410-008-0292-2 CrossRefGoogle Scholar
  59. Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220CrossRefGoogle Scholar
  60. Sliwinski JT, Bachmann O, Ellis BS, Dávila-Harris P, Nelson BK, Dufek J (2015) Eruption of shallow crystal cumulates during explosive phonolitic eruptions on Tenerife, Canary Islands. J Petrol 56(11):2173–2194.  https://doi.org/10.1093/petrology/egv068 CrossRefGoogle Scholar
  61. Sliwinski JT, Bachmann O, Dungan MA, Huber C, Deering CD, Lipman PW, Martin LHJ, Liebske C (2017) Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA. Contrib Miner Petr 172(5):30.  https://doi.org/10.1007/s00410-017-1351-3 CrossRefGoogle Scholar
  62. Smith RL, Bailey RA (1966) The Bandelier Tuff: a study of ash-flow eruption cycles from zoned Magma Chambers. Bull Volcanol 29(1):83–103.  https://doi.org/10.1007/BF02597146 CrossRefGoogle Scholar
  63. Thornton CP, Tuttle OF (1960) Chemistry of igneousrocks.1. Differentiation Index. Am J Sci 258(9):664–684CrossRefGoogle Scholar
  64. Tomlinson EL, Arienzo I, Civetta L, Wulf S, Smith VC, Hardiman M, Lane CS, Carandente A, Orsi G, Rosi M, Muller W, Menzies MA (2012) Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: Implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions. Geochim Cosmochim Ac 93:102–128.  https://doi.org/10.1016/j.gca.2012.05.043 CrossRefGoogle Scholar
  65. Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107(3–4):135–151 doi.  https://doi.org/10.1016/J.Lithos.2008.09.012 CrossRefGoogle Scholar
  66. Vitale S, Isaia R (2014) Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): insight into volcano-tectonic processes. Int J Earth Sci (Geol Rundsch) 103(3):801–819.  https://doi.org/10.1007/s00531-013-0979-0 CrossRefGoogle Scholar
  67. Wohletz K, Orsi G, Devita S (1995) Eruptive Mechanisms of the Neapolitan-Yellow-Tuff Interpreted from stratigraphic, chemical, and granulometric data. J Volcanol Geotherm Res 67(4):263–290.  https://doi.org/10.1016/0377-0273(95)00002-C CrossRefGoogle Scholar
  68. Wolff JA, Ramos FC (2014) Processes in Caldera-forming high-silica rhyolite magma: Rb–Sr and Pb isotope Systematics of the Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico, USA. J Petrol 55(2):345–375.  https://doi.org/10.1093/petrology/egt070 CrossRefGoogle Scholar
  69. Wolff JA, Storey M (1984) Zoning in highly alkaline magma bodies. Geol Mag 121(6):563–575CrossRefGoogle Scholar
  70. Wolff JA, Worner G, Blake S (1990) Gradients in physical parameters in zoned felsic magma bodies—implications for evolution and eruptive withdrawal. J Volcanol Geotherm Res 43(1–4):37–55.  https://doi.org/10.1016/0377-0273(90)90043-F CrossRefGoogle Scholar
  71. Wolff JA, Ellis BS, Ramos FC, Starkel WA, Boroughs S, Olin PH, Bachmann O (2015) Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: a comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos 236–237:275–286.  https://doi.org/10.1016/j.lithos.2015.09.002 CrossRefGoogle Scholar
  72. Worner G, Schmincke HU (1984) Mineralogical and chemical zonation of the Laacher See Tephra Sequence (East Eifel, West-Germany). J Petrol 25(4):805–835CrossRefGoogle Scholar
  73. Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35(12).  https://doi.org/10.1029/2008gl034242

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Francesca Forni
    • 1
  • Eleonora Petricca
    • 1
  • Olivier Bachmann
    • 1
  • Silvio Mollo
    • 2
    • 3
  • Gianfilippo De Astis
    • 3
  • Monica Piochi
    • 4
  1. 1.Institute of Geochemistry and PetrologyETH ZürichZurichSwitzerland
  2. 2.Dipartimento di Scienze della TerraSapienza-Università di RomaRomeItaly
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  4. 4.Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio VesuvianoNaplesItaly

Personalised recommendations