Advertisement

Role of melting process and melt–rock reaction in the formation of Jurassic MORB-type basalts (Alpine ophiolites)

  • Maria Rosaria Renna
  • Riccardo Tribuzio
  • Alessio Sanfilippo
  • Matthew Thirlwall
Original Paper

Abstract

This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco–Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria–Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt–rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco–Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4–0.3 vs. 0.2) and ZrN/YN (0.9–0.6 vs. 0.4–0.3) than that from the Bracco–Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial εNd from + 8.8 to + 8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint (εNd at the time of basalt formation = − 5.5 and − 5.2, respectively). We propose that the Bracco–Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.

Keywords

Mid-ocean ridge basalts Nd isotope Incompatible elements Jurassic ophiolites Melting process Melt–lower crust interaction 

Notes

Acknowledgements

We are grateful to V. Salters and an anonymous reviewer for the constructive comments that considerably improved the quality of this study. This work was financially supported by Programma di Ricerca di Interesse Nazionale of the Italian Ministero dell’Università e della Ricerca (Prot. 2015C5LN35), and Fondi Ricerca Giovani 2016 of Università degli Studi di Pavia.

Supplementary material

410_2018_1456_MOESM1_ESM.xlsx (24 kb)
Supplementary material 1 (XLSX 23 KB)

References

  1. Abbate E, Bortolotti V, Principi G (1980) Apennine ophiolites: a peculiar oceanic crust. Ofioliti 1:59–96Google Scholar
  2. Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater–basalt interactions. J Geophys Res Solid Earth 91:10309–10335CrossRefGoogle Scholar
  3. Alt JC, Laverne C, Vanko DA, Tartarotti P, Teagle DA, Bach W, Zuleger E, Erzinger J, Honnorez J, Pezard PA, Becker K, Salisbury MH, Becker K (1996). 34. Hydrothermal alteration of a section of upper oceanic crust in the Eastern Equatorial Pacific: a synthesis of results from site 504 (DSDP LEGS 69, 70, and 83, and ODP LEGS 111, 137,140, and 148). In: Proceedings of the Ocean Drilling Program, scientific results, vol 148Google Scholar
  4. Anders E, Ebihara M (1982) Solar-system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380CrossRefGoogle Scholar
  5. Barry TL, Davies JH, Wolstencroft M, Millar IL, Zhao Z, Jian P, Safanova I, Price M (2017) Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry. Sci Rep 7:1870CrossRefGoogle Scholar
  6. Baud JP (1975) Étude géologique du massif de roches vertes de Haute-Balagne (Corse). Ph.D. thesisGoogle Scholar
  7. Bédard JH (2000) Betts Cove ophiolite and its cover rocks, Newfoundland. Natural Resources Canada, No. 550Google Scholar
  8. Bill M, O’Dogherty L, Guex J, Baumgartner PO, Masson H (2001) Radiolarite ages in Alpine–Mediterranean ophiolites: constraints on the oceanic spreading and the Tethys–Atlantic connection. Geol Soc Am Bull 113:129–143CrossRefGoogle Scholar
  9. Blichert-Toft J, Rosing MT, Lesher CE, Chauvel C (1995) Geochemical constraints on the origin of the late Archean Skjoldungen Alkaline Igneous Province, SE Greenland. J Petrol 36:515–561CrossRefGoogle Scholar
  10. Blundy J, Wood B (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372:452–454CrossRefGoogle Scholar
  11. Bonatti E, Peyve A, Kepezhinskas P, Kurentsova N, Seyler M, Skolotnev S, Udintsev G (1992) Upper mantle heterogeneity below the Mid-Atlantic Ridge, 0–15 N. J Geophys Res Solid Earth 97:4461–4476CrossRefGoogle Scholar
  12. Borghini G, Rampone E (2007) Postcumulus processes in oceanic-type olivine-rich cumulates: the role of trapped melt crystallization versus melt/rock interaction. Contrib Miner Petrol 154:619–633CrossRefGoogle Scholar
  13. Chiari M, Marcucci M, Principi G (2000) The age of the radiolarian cherts associated with the ophiolites in the Apennines (Italy). Ofioliti 25:141–146Google Scholar
  14. Claeson DT, Meurer WP, Hogmalm KJ, Larson S (2007) Using LA-ICPMS mapping and sector zonation to understand growth and trace-element partitioning in sector-zoned clinopyroxene oikocrysts from the Norra Ulvö Gabbro, Sweden. J Petrol 48:711–728CrossRefGoogle Scholar
  15. Collier ML, Kelemen PB (2010) The case for reactive crystallization at mid-ocean ridges. J Petrol 51:1913–1940CrossRefGoogle Scholar
  16. Coogan LA (2007) The lower oceanic crust. In: Turekian K, Holland HD (eds) Treatise on Geochemistry, vol 3. Elsevier, Amsterdam, pp 1–45Google Scholar
  17. Coogan LA, O’Hara MJ (2015) MORB differentiation: in situ crystallization in replenished-tapped magma chambers. Geochim Cosmochim Acta 158:147–161CrossRefGoogle Scholar
  18. Coogan LA, Saunders AD, Kempton PD, Norry MJ (2000) Evidence from oceanic gabbros for porous melt migration within a crystal mush beneath the Mid-Atlantic Ridge. Geochem Geophys Geosyst 1:Paper number 2000GC000072CrossRefGoogle Scholar
  19. Cortesogno L, Galbiati B, Principi G (1987) Note alla “carta geologica delle ofioliti del Bracco” e ricostruzione della paleogeografia giurassico-cretacea. Ofioliti 12:261–342Google Scholar
  20. Danelian T, De Wever P, Durand-Delga M (2008) Revised radiolarian ages for the sedimentary cover of the Balagne ophiolite (Corsica, France). Implications for the palaeoenvironmental evolution of the Balano-Ligurian margin. B Soc Geol Fr 179:289–296CrossRefGoogle Scholar
  21. Desmurs L, Müntener O, Manatschal G (2002) Onset of magmatic accretion within a magma-poor rifted margin: a case study from the Platta ocean-continent transition, eastern Switzerland. Contrib Miner Petrol 144(3):365–382CrossRefGoogle Scholar
  22. Dick HJ (1977) Partial melting in the Josephine Peridotite; I, the effect on mineral composition and its consequence for geobarometry and geothermometry. Am J Sci 277:801–832CrossRefGoogle Scholar
  23. Dick HJ, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sc Lett 69:88–106CrossRefGoogle Scholar
  24. Drouin M, Godard M, Ildefonse B, Bruguier O, Garrido CJ (2009) Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30 N). Chem Geol 264:71–88CrossRefGoogle Scholar
  25. Drouin M, Ildefonse B, Godard M (2010) A microstructural imprint of melt impregnation in slow spreading lithosphere: olivine-rich troctolites from the Atlantis Massif, Mid-Atlantic Ridge, 30 N, IODP Hole U1309D. Geochem Geophys Geosyst 11:Q06003.  https://doi.org/10.1029/2009GC002995 CrossRefGoogle Scholar
  26. Durand-Delga M (1984) Principaux traits de la Corse Alpine et corrélations avec les Alpes Ligures. Memorie della Società Geologica Italiana 28:285–329Google Scholar
  27. Durand-Delga M, Peybernès B, Rossi P (1997) Arguments en faveur de la position, au Jurassique, des ophiolites de Balagne (Haute-Corse, France) au voisinage de la marge continentale européenne. Cr Acad Sci II A 325:973–981Google Scholar
  28. Durand-Delga M, Lahondère D, Puccinelli A, Rossi P, Vellutini P (2001) Pre-meeting transect Corsica-Elba Isalndsouthern Tuscany guidebook-Corsica. Ofioliti 26:303–320Google Scholar
  29. Dygert N, Liang Y, Kelemen PB (2016) Formation of plagioclase lherzolite and associated dunite–harzburgite–lherzolite sequences by multiple episodes of melt percolation and melt–rock reaction: an example from the Trinity Ophiolite, California, USA. J Petrol 57:815–838CrossRefGoogle Scholar
  30. Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518CrossRefGoogle Scholar
  31. Gao Y, Hoefs J, Hellebrand E, von der Handt A, Snow JE (2007) Trace element zoning in pyroxenes from ODP Hole 735B gabbros: diffusive exchange or synkinematic crystal fractionation? Contrib Miner Petrol 153:429–442CrossRefGoogle Scholar
  32. Gillis KM, Thompson G, Kelley DS (1993) A view of the lower crustal component of hydrothermal systems at the Mid-Atlantic Ridge. J Geophys Res Solid Earth 98:19597–19619CrossRefGoogle Scholar
  33. Gromet LP, Haskin LA, Korotev RL, Dymek RF (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482CrossRefGoogle Scholar
  34. Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalts (MORB). In: Phipps Morgan J, Blackman DK, Sinton JM (eds) Mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph, American Geophysical Union. vol 71, pp 281–310Google Scholar
  35. Gruppo di Lavoro sulle Ofioliti Mediterranee (1977) I complessi ofiolitici e le unità cristalline della Corsica alpina. Ofioliti 2:265–324Google Scholar
  36. Harper GD (2003) Fe–Ti basalts and propagating-rift tectonics in the Josephine Ophiolite. Geol Soc Am Bull 115:771–787CrossRefGoogle Scholar
  37. Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Miner Petrol 113:1–8CrossRefGoogle Scholar
  38. Hemond C, Hofmann AW, Vlastelic I, Nauret F (2006) Origin of MORB enrichment and relative trace element compatibilities along the Mid-Atlantic Ridge between 10 and 24 N. Geochem Geophys Geosyst 7(12):Q12010.  https://doi.org/10.1029/2006GC001317 CrossRefGoogle Scholar
  39. Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Miner Petrol 124:185–208CrossRefGoogle Scholar
  40. Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise Geochem 2:61–101Google Scholar
  41. Jeffries TE, Jackson SE, Longerich HP (1998) Application of a frequency quintupled Nd:YAG source (λ = 213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. J Anal Atom Spectrom 13:935–940CrossRefGoogle Scholar
  42. Kelemen PB, Shimizu N, Salters VJ (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753CrossRefGoogle Scholar
  43. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res Solid Earth 97:6885–6906CrossRefGoogle Scholar
  44. Klein EM (2003) Geochemistry of the igneous oceanic crust. Treatise Geochem 3:433–463CrossRefGoogle Scholar
  45. Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res Solid Earth 92:8089–8115CrossRefGoogle Scholar
  46. Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279Google Scholar
  47. Lagabrielle Y, Cannat M (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18:319–322CrossRefGoogle Scholar
  48. Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell, OxfordGoogle Scholar
  49. Le Roex AP, Dick HJB, Reid AM, Erlank AJ (1982) Ferrobasalts from the Spiess ridge segment of the Southwest Indian ridge. Earth Planet Sci Lett 60:437–451CrossRefGoogle Scholar
  50. Le Roux PJ, le Roex A, Schilling J-G, Shimizu N, Perkins WW, Pearce NJG (2002) Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet Sci Lett 203:479–498CrossRefGoogle Scholar
  51. Li XH, Faure M, Rossi P, Lin W, Lahondere D (2015) Age of Alpine Corsica ophiolites revisited: insights from in situ zircon U–Pb age and O–Hf isotopes. Lithos 220:179–190CrossRefGoogle Scholar
  52. Lissenberg CJ, Dick HJ (2008) Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet Sci Lett 271:311–325CrossRefGoogle Scholar
  53. Lissenberg CJ, MacLeod CJ (2016) A reactive porous flow control on mid-ocean ridge magmatic evolution. J Petrol 57:2195–2220CrossRefGoogle Scholar
  54. Lissenberg CJ, MacLeod CJ, Howard KA, Godard M (2013) Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth Planet Sci Lett 361:436–447CrossRefGoogle Scholar
  55. Lofgren GE, Huss GR, Wasserburg GJ (2006) An experimental study of trace-element partitioning between Ti–Al-clinopyroxene and melt: equilibrium and kinetic effects including sector zoning. Am Miner 91:1596–1606CrossRefGoogle Scholar
  56. Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473:4–19CrossRefGoogle Scholar
  57. Marroni M, Pandolfi L (2003) Deformation history of the ophiolite sequence from the Balagne Nappe, northern Corsica: insights in the tectonic evolution of Alpine Corsica. Geol J 38:67–83CrossRefGoogle Scholar
  58. Marroni M, Pandolfi L (2007) The architecture of an incipient oceanic basin: a tentative reconstruction of the Jurassic Liguria-Piemonte basin along the Northern Apennines–Alpine Corsica transect. Int J Earth Sci 96:1059–1078CrossRefGoogle Scholar
  59. Meyzen CM, Toplis MJ, Humler E, Ludden JN, Mével C (2003) A discontinuity in mantle composition beneath the southwest Indian ridge. Nature 421:731–733CrossRefGoogle Scholar
  60. Molli G, Malavieille J (2011) Orogenic processes and the Corsica/Apennines geodynamic evolution: insights from Taiwan. Int J Earth Sci 100:1207–1224CrossRefGoogle Scholar
  61. Montanini A, Tribuzio R, Vernia L (2008) Petrogenesis of basalts and gabbros from an ancient continent–ocean transition (External Liguride ophiolites, Northern Italy). Lithos 101:453–479CrossRefGoogle Scholar
  62. Mottl MJ (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol Soc Am Bull 94:161–180CrossRefGoogle Scholar
  63. Müntener O, Manatschal G, Desmurs L, Pettke T (2010) Plagioclase peridotites in ocean–continent transitions: refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51:255–294CrossRefGoogle Scholar
  64. O’neill HSC, Jenner FE (2012) The global pattern of trace-element distributions in ocean floor basalts. Nature 491:698–705CrossRefGoogle Scholar
  65. Paquet M, Cannat M, Brunelli D, Hamelin C, Humler E (2016) Effect of melt/mantle interactions on MORB chemistry at the easternmost Southwest Indian Ridge (61°–67°E). Geochem Geophys Geosyst 17:4605–4640CrossRefGoogle Scholar
  66. Peybernès B, Durand-Delga M, Cugny P (2001) Reconstitution, en Corse, au Jurassique moyen–supérieur, de la marge européenne de l’océan Liguro-Piémontais, grâce à des niveaux repères à Praekurnubia crusei (foraminifère). Cr Acad Sci II A 332:499–506Google Scholar
  67. Piccardo GB, Zanetti A, Müntener O (2007) Melt/peridotite interaction in the Southern Lanzo peridotite: field, textural and geochemical evidence. Lithos 94:181–209CrossRefGoogle Scholar
  68. Principi G, Bortolotti V, Chiari M, Cortesogno L, Gaggero L, Marcucci M, Saccani E, Treves B (2004) The pre-orogenic volcano-sedimentary covers of the Western Tethys oceanic basin: a review. Ofioliti 29:177–212Google Scholar
  69. Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1996) Trace element and isotope geochemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride, N. Italy). Contrib Mineral Petr 123:61–76CrossRefGoogle Scholar
  70. Rampone E, Piccardo GB, Vannucci R, Bottazzi P (1997) Chemistry and origin of trapped melts in ophioiitic peridotites. Geochim Cosmochim Acta 61:4557–4569CrossRefGoogle Scholar
  71. Rampone E, Hofmann AW, Raczek I (1998) Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle–crust link. Earth Planet Sci Lett 163:175–189CrossRefGoogle Scholar
  72. Rampone E, Piccardo GB, Hofmann AW (2008) Multi-stage melt–rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contrib Miner Petrol 156:453–475CrossRefGoogle Scholar
  73. Regelous M, Weinzierl CG, Haase KM (2016) Controls on melting at spreading ridges from correlated abyssal peridotite–mid-ocean ridge basalt compositions. Earth Planet Sci Lett 449:1–11CrossRefGoogle Scholar
  74. Renna MR, Tribuzio R (2011) Olivine-rich troctolites from Ligurian ophiolites (Italy): evidence for impregnation of replacive mantle conduits by MORB-type melts. J Petrol 52:1763–1790CrossRefGoogle Scholar
  75. Renna MR, Tiepolo M, Tribuzio R (2011) In situ U–Pb geochronology of baddeleyite–zircon pairs using laser-ablation ICPMS: the case-study of quartz gabbro from Varney Nunatak (central Victoria Land, Antarctica). Eur J Miner 23:223–240CrossRefGoogle Scholar
  76. Renna MR, Tribuzio R, Ottolini L (2016) New perspectives on the origin of olivine-rich troctolites and associated harrisites from the Ligurian ophiolites (Italy). J Geol Soc Lond 173:916–932CrossRefGoogle Scholar
  77. Renna MR, Tribuzio R, Sanfilippo A, Tiepolo M (2017) Zircon U–Pb geochronology of lower crust and quartzo-feldspathic clastic sediments from the Balagne ophiolite (Corsica). Swiss J Geosci 110:479–501CrossRefGoogle Scholar
  78. Roeder PL, Emslie R (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289CrossRefGoogle Scholar
  79. Rossi P, Durand-Delga M, Lahondere JC (2001) Carte Géologique de France (1/50000), feuille Santo-Pietro-di-Tenda (1106). In: Rossi P, Durand-Delga M, Lahondere JC, Lahondere D (eds) Orleans BRGM. Notice explicative par. BRGM Orléans, France, p 224Google Scholar
  80. Rossi P, Cocherie A, Lahondère D, Fanning CM (2002) La marge européenne de la Téthys jurassique en Corse: datation de trondhjémites de Balagne et indices de croûte continentale sous le domaine Balano-Ligure. C R Geosci 334:313–322CrossRefGoogle Scholar
  81. Saccani E (2015) A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th–Nb and Ce–Dy–Yb systematics. Geosci Front 6:481–501CrossRefGoogle Scholar
  82. Saccani E, Principi G, Garfagnoli F, Menna F (2008) Corsica ophiolites: geochemistry and petrogenesis of basaltic and metabasaltic rocks. Ofioliti 33:187–207Google Scholar
  83. Salters VJ, Dick HJ (2002) Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418:68–72CrossRefGoogle Scholar
  84. Sanfilippo A, Tribuzio R (2011) Melt transport and deformation history in an “non-volcanic” ophiolitic section (Northern Apennine, Italy): implications for crustal accretion at slow spreading settings. Geochem Geophys Geosyst 12:Q0AG04.  https://doi.org/10.1029/2010GC003429 CrossRefGoogle Scholar
  85. Sanfilippo A, Dick HJ, Ohara Y (2013) Melt–rock reaction in the mantle: mantle troctolites from the Parece Vela ancient back-arc spreading center. J Petrol 54:861–885CrossRefGoogle Scholar
  86. Sanfilippo A, Tribuzio R, Tiepolo M (2014) Mantle–crust interactions in the oceanic lithosphere: Constraints from minor and trace elements in olivine. Geochim Cosmochim Acta 141:423–439CrossRefGoogle Scholar
  87. Sanfilippo A, Morishita T, Kumagai H, Nakamura K, Okino K, Hara K, Tamura A, Arai S (2015a) Hybrid troctolites from mid-ocean ridges: inherited mantle in the lower crust. Lithos 232:124–130CrossRefGoogle Scholar
  88. Sanfilippo A, Tribuzio R, Tiepolo M, Berno D (2015b) Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica). Contrib Miner Petrol 170:1–12CrossRefGoogle Scholar
  89. Schwandt CS, McKay GA (2006) Minor-and trace-element sector zoning in synthetic enstatite. Am Miner 91:1607–1615CrossRefGoogle Scholar
  90. Schwarzenbach EM, Früh-Green GL, Bernasconi SM, Alt JC, Shanks WC III, Gaggero L, Crispini L (2012) Sulfur geochemistry of peridotite-hosted hydrothermal systems: comparing the Ligurian ophiolites with oceanic serpentinites. Geochim Cosmochim Acta 91:283–305CrossRefGoogle Scholar
  91. Shi P, Libourel G (1991) The effects of FeO on the system CMAS at low pressure and implications for basalt crystallization processes. Contrib Miner Petrol 108:129–145CrossRefGoogle Scholar
  92. Standish JJ, Dick HJB, Michael PJ, Melson WG, O’Hearn T (2008) MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25E): Major element chemistry and the importance of process versus source. Geochem Geophys Geosyst 9:Q05004CrossRefGoogle Scholar
  93. Stille P, Clauer N, Abrecht J (1989) Nd isotopic composition of Jurassic Tethys seawater and the genesis of Alpine Mn-deposits: evidence from Sr–Nd isotope data. Geochim Cosmochim Acta 53:1095–1099CrossRefGoogle Scholar
  94. Stracke A (2012) Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem Geol 330:274–299CrossRefGoogle Scholar
  95. Stracke A, Bourdon B (2009) The importance of melt extraction for tracing mantle heterogeneity. Geochim Cosmochim Acta 73:218–238CrossRefGoogle Scholar
  96. Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:Q05007CrossRefGoogle Scholar
  97. Suhr G, Hellebrand E, Johnson K, Brunelli D (2008) Stacked gabbro units and intervening mantle: a detailed look at a section of IODP Leg 305, Hole U1309D. Geochem Geophys Geosyst 9:Q10007.  https://doi.org/10.1029/2008GC002012 Google Scholar
  98. Thirlwall MF (1991a) Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem Geol Isot Geosci Sect 94:85–104CrossRefGoogle Scholar
  99. Thirlwall MF (1991b) High-precision multicollector isotopic analysis of low levels of Nd as oxide. Chem Geol 94:13–22CrossRefGoogle Scholar
  100. Tiepolo M, Tribuzio R, Vannucci R (2002) The compositions of mantle-derived melts developed during the Alpine continental collision. Contrib Miner Petrol 144:1–15CrossRefGoogle Scholar
  101. Treves BE, Harper GD (1994) Exposure of serpentinites on the ocean floor: sequence of faulting and hydrofracturing in the Northern Apennine ophicalcites. Ofioliti 19:435–466Google Scholar
  102. Tribuzio R, Riccardi MP, Ottolini L (1995) Trace element redistribution in high-temperature deformed gabbros from East Ligurian ophiolites (Northern Apennines, Italy): constraints on the origin of syndeformation fluids. J Metamorph Geol 13:367–377CrossRefGoogle Scholar
  103. Tribuzio R, Tiepolo M, Vannucci R, Bottazzi P (1999) Trace element distribution within olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contrib Miner Petr 134:123–133CrossRefGoogle Scholar
  104. Tribuzio R, Renna MR, Dallai L, Zanetti A (2014) The magmatic–hydrothermal transition in the lower oceanic crust: Clues from the Ligurian ophiolites, Italy. Geochim Cosmochim Acta 130:188–211CrossRefGoogle Scholar
  105. Tribuzio R, Garzetti F, Corfu F, Tiepolo M, Renna MR (2016) U–Pb zircon geochronology of the Ligurian ophiolites (Northern Apennine, Italy): Implications for continental breakup to slow seafloor spreading. Tectonophysics 666:220–243CrossRefGoogle Scholar
  106. Vannucci R, Rampone E, Piccardo GB, Ottolini L, Bottazzi P (1993) Ophiolitic magmatism in the Ligurian Tethys: an ion microprobe study of basaltic clinopyroxenes. Contrib Mineral Petr 115:123–137CrossRefGoogle Scholar
  107. Venturelli G, Thorpe RS, Potts PJ (1981) Rare earth and trace element characteristics of ophiolitic metabasalts from the Alpine–Apennine belt. Earth Planet Sc Lett 53:109–123CrossRefGoogle Scholar
  108. Vissers RL, van Hinsbergen DJ, Meijer PT, Piccardo GB (2013) Kinematics of Jurassic ultra-slow spreading in the Piemonte Ligurian ocean. Earth Planet Sci Lett 380:138–150CrossRefGoogle Scholar
  109. Waters CL, Sims KW, Perfit MR, Blichert-Toft J, Blusztajn J (2011) Perspective on the genesis of E-MORB from chemical and isotopic heterogeneity at 9–10 N East Pacific Rise. J Petrol 52:565–602CrossRefGoogle Scholar
  110. White WM, Klein EM (2014) Composition of the oceanic crust. In: Treatise on geochemistry. 2nd edn. Elsevier, Amsterdam, Netherlands, pp 457–496Google Scholar
  111. Wilson SC, Murton BJ, Taylor RN (2013) Mantle composition controls the development of an oceanic core complex. Geochem Geophys Geosyst 14(4):979–995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della TerraUniversità di MessinaMessinaItaly
  2. 2.Dipartimento di Scienze della Terra e dell’AmbienteUniversità di PaviaPaviaItaly
  3. 3.C.N.R.-Istituto di Geoscienze e Georisorse, U. O. di PaviaPaviaItaly
  4. 4.Department of Earth SciencesRoyal Holloway University of LondonEghamUK

Personalised recommendations