Melt inclusion constraints on volatile systematics and degassing history of the 2014–2015 Holuhraun eruption, Iceland

Abstract

The mass of volatiles emitted during volcanic eruptions is often estimated by comparing the volatile contents of undegassed melt inclusions, trapped in crystals at an early stage of magmatic evolution, with that of the degassed matrix glass. Here we present detailed characterisation of magmatic volatiles (H2O, CO2, S, Fl and Cl) of crystal-hosted melt and fluid inclusions from the 2014–2015 Holuhraun eruption of the Bárðarbunga volcanic system, Iceland. Based on the ratios of magmatic volatiles to similarly incompatible trace elements, the undegassed primary volatile contents of the Holuhraun parental melt are estimated at 1500–1700 ppm CO2, 0.13–0.16 wt% H2O, 60–80 ppm Cl, 130–240 ppm F and 500–800 ppm S. High-density fluid inclusions indicate onset of crystallisation at pressures ≥ 0.4 GPa (~ 12 km depth) promoting deep degassing of CO2. Prior to the onset of degassing, the melt CO2 content may have reached 3000–4000 ppm, with the total magmatic CO2 budget estimated at  23–55 Mt. SO2 release commenced at 0.12 GPa (~ 3.6 km depth), eventually leading to entrapment of SO2 vapour in low-density fluid inclusions. We calculate the syn-eruptive volatile release as 22.2 Mt of magmatic H2O, 5.9–7.7 Mt CO2, and 11.3 Mt of SO2 over the course of the eruption; F and Cl release were insignificant. Melt inclusion constraints on syn-eruptive volatile release are similar to estimates made during in situ field monitoring, with the exception of H2O, where field measurements may be heavily biased by the incorporation of meteoric water.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ariskin AA, Dayushevsky LV, Bychkov KA, McNeill AW, Barmina GS, Nikolaev GS (2013) Modeling solubility of Fe–Ni sulfides in basaltic magmas: the effect of Nickel. Econ Geol 108:1983–2003

    Article  Google Scholar 

  2. Baasner A, Schmidt BC, Webb SL (2013) The effect of chlorine, fluorine and water on the viscosity of aluminosilicate melts. Chem Geol 357:134–149

    Article  Google Scholar 

  3. Baker DR (2008) The fidelity of melt inclusions as records of melt composition. Contrib Miner Petrol 156:377–395

    Article  Google Scholar 

  4. Barry PH, Hilton DR, Furi E, Halldórsson SA, Grönvold K (2014) Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochim Cosmochim Acta 134:74–99

    Article  Google Scholar 

  5. Berkesi M, Hidas K, Guzmics T, Dubessy J, Bodnar RJ, Szabo CS, Vajna B, Tsunogae T (2009) Detection of small amounts of H2O in CO2-rich fluid inclusions using Raman spectroscopy. J Raman Spectrosc 40:1461–1463

    Article  Google Scholar 

  6. Black BA, Elkins-Tanton LT, Rowe MC, Peate IU (2012) Magnitude and consequences of volatile release from the Siberian traps. Earth Planet Sci Lett 317–318:363–373

    Article  Google Scholar 

  7. Blake S, Self S, Sharma K, Sephton S (2010) Sulfur release from the Columbia River Basalt and other flood lava eruptions constrained by a model of sulfide saturation. Earth Planet Sci Lett 299:328–338

    Article  Google Scholar 

  8. Bony E, Thordarson T, Wright R, Höskuldsson A, Jónsdóttir I (2017) The magma discharge and the volume of lava erupted during the 2014–2015 eruption on Dyngjusandur, North Iceland as determined by ground based and satellite derived measurements. Vorráðstefna Jarðfræðafélags Islands Abstract book, pp 14–15

  9. Breddam K (2002) Kistufell: primitive melt from the Iceland mantle plume. J Petrol 43:345–373

    Article  Google Scholar 

  10. Condomines M, Grönvold K, Hooker PJ, Muehlenbachs K, O’Nions RK, Oskarsson N, Oxburgh ER (1983) Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett 66:125–136

    Article  Google Scholar 

  11. Dalou C, Koga KT, Shimizu N (2009) Chlorine and Fluorine partitioning between peridotite and basalt at mantle wedge conditions: implications for arc magma source. AGU Abstract

  12. Danyushevsky LV (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geoth Res 3–4:265–280

    Article  Google Scholar 

  13. Danyushevsky LV, Plechov P (2011) Petrolog3: Integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12:Q07021

    Article  Google Scholar 

  14. Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  15. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid ocean ridge basaltic liquids. 1. Calibration and solubility models. J Petrol 36:1607–1631

    Google Scholar 

  16. Dixon JE, Leist L, Langmuir C, Schilling JG (2002) Recycled dehydrated lithosphere observed in plumes influence mid-ocean ridge basalt. Nature 420(28):385–389

    Article  Google Scholar 

  17. Esposito R, Lamadrid HM, Redi D, Steele-McInnis M, Bodnar RJ, Manning CE, DeVivo B, Cannatelli C, Lima A (2016) Detection of liquid H2O in vapor bubbles in reheated melt inclusions: implications for magmatic fluid composition and volatile budgets of magmas? Am Miner 101:1691–1695

    Article  Google Scholar 

  18. Fall A, Tattich B, Bodnar RJ (2011) Combined microthermometric and Raman spectroscopic technique to determine the salinity of H2O–CO2–NaCl fluid inclusions based on clathrate melting. Geochim Cosmochim Acta 75:951–964

    Article  Google Scholar 

  19. Faure F, Schiano P (2005) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236:882–898

    Article  Google Scholar 

  20. Frezzotti ML, Peccerillo A (2007) Diamond-bearing COHS fluids in the mantle beneath Hawaii. Earth Planet Sci Lett 262:273–283

    Article  Google Scholar 

  21. Frezzotti ML, vcTecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20

    Article  Google Scholar 

  22. Gauthier P-J, Sigmarsson O, Gouhier M, Haddadi B, Moune S (2016) Elevated gas flux and trace metal degassing from the 2014–2015 fissure eruption at the Bárðarbunga volcanic system, Iceland. J Geophys Res Solid Earth 121:1610–1630

    Article  Google Scholar 

  23. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  24. Gíslason SR, Stefánsdóttir G, Pfeffer MA, Barsotti S, Jóhannsson Th, Galeczka I, Bali E, Sigmarsson O, Stefánsson A, Keller NS, Sigurdsson Á, Bergsson B, Galle B, Jacobo VC, Arellano S, Aiuppa A, Jónasdóttir EB, Eiríksdóttir ES, Jakobsson S, Guðfinnsson GH, Halldórsson SA, Gunnarsson H, Haddadi B, Jónsdóttir I, Thordarson Th, Riishuus M, Högnadóttir Th, Dürig T, Pedersen GBM, Höskuldsson Á, Gudmundsson MT (2015) Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem Perspect Lett 1:84–93

    Article  Google Scholar 

  25. Gudmundsson MT, Jónsdóttir K, Hooper A, Holohan EP, Halldórsson SA, Ófeigsson BG, Cesca S, Vogfjörd KS, Sigmundsson F, Högnadóttir Th, Einarsson P, Sigmarsson O, Jarosch AH, Jónasson K, Magnússon E, Hreinsdóttir S, Bagnardi M, Parks MM, Hjörleifsdóttir V, Pálsson F, Walter TR, Schöpfer MPJ, Heimann S, Reynolds HI, Dumont S, Bali E, Gudfinnsson GH, Dahm T, Roberts M, Hensch M, Belart JMC, Spaans K, Jakobsson S, Gudmundsson GB, Fridriksdóttir HM, Drouin V, Dürig T, Adalgeirsdóttir G, Riishuus MS, Pedersen GBM, van Boeckel T, Oddsson B, Pfeffer MA, Barsotti S, Bergsson B, Donovan A, Burton MR, Aiuppa A, (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science. https://doi.org/10.1126/science.aaf8988

    Google Scholar 

  26. Gurenko AA, Chaussidon M (1995) Enriched and depleted primitive melts included in olivine from Icelandic tholeiites: Origin by continuous melting of a single mantle column. Geochim Cosmochim Acta 59:2905–2917

    Article  Google Scholar 

  27. Halldórsson SA, Barnes JD, Stefánsson A, Hilton DR, Hauri EH, Marschal EW (2016) Subducted lithosphere controls halogen enrichments in the Iceland mantle plume source. Geology. https://doi.org/10.1130/G37924.1

    Google Scholar 

  28. Halldórsson SA, Bali E, Hartley ME, Peate DW, Guðfinnsson GH, Jakobsson S, Bindeman I, Neave DA and the Holuhraun Eruption Team (this issue) Petrology and Geochemistry of the 2014–2015 Holuhraun eruption, Iceland: compositional characteristics, temporal variability and magma storage

  29. Hansteen TH (1991) Multi-stage evolution of the picritic Mælifell rocks, SW Iceland: constraints from mineralogy and inclusions of glass and fluid in olivine. Contrib Miner Petrol 109:225–239

    Article  Google Scholar 

  30. Hansteen TH, Klugel A (2008) Fluid inclusion thermobarometry as tracer for magmatic processes. Rev Miner Geochem 69:143–177

    Article  Google Scholar 

  31. Hartley ME, Maclennan J, Edmonds M, Thordarson T (2014) Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet Sci Lett 393:120–131

    Article  Google Scholar 

  32. Hartley ME, Neave DA, Maclennan J, Edmonds M, Thordarson T (2015) Diffusive over-hydration of olivine-hosted melt inclusions. Earth Planet Sci Lett 425:168–178

    Article  Google Scholar 

  33. Hartley ME, Bali E, Halldórson SA, Maclennan J, Neave DA (this issue) Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland

  34. Hauri E, Grönvold K, Oskarsson N, McKenzie D (2002) Abundance of carbon in the icelandic mantle: constraints from melt inclusions. American Geophysical Union, Spring Meeting 2002, abstract #V51D-03

  35. Hirschmann MM, Tenner T, Abaud C, Withers AC (2009) Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Earth Planet Sci Lett 176(1–2):54–68

    Article  Google Scholar 

  36. Hudson TS, White RS, Greenfield T, Ágústsdóttir T, Brisbourne A, Green RG (2017) Deep crustal melt plumbing under Bárðarbunga volcano, Iceland. Geophys Res Lett 44:8785–8794

    Article  Google Scholar 

  37. Jones MT, Jerram DA, Svensen HH, Grove C (2016) The effects of large igneous provinces on the global carbon and sulphur cycle. Palaeogeogr Palaeoclimatol Palaeoecol 441:4–21

    Article  Google Scholar 

  38. Kent AJR, Norman MD, Hutcheon I, Stolper EM (1999) Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem Geol 156:299–319

    Article  Google Scholar 

  39. Le Voyer M, Kelley KA, Cottrell E, Hauri EH (2017): Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat Commun. https://doi.org/10.1038/ncomms14062

    Google Scholar 

  40. Maclennan J (2017) Bubble formation and decrepitation control the CO2 content of olivine-hosted melt inclusions. Geochem Geophys Geosyst 18/2:597–616

    Article  Google Scholar 

  41. Métrich N, Wallace P (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In: Putirka K, Tepley F (eds) Minerals, inclusions & volcanic processes (eds) Rev. Mineral. Geochem., vol 69, pp 363–402

  42. Métrich N, Sigurdsson H, Meyer PS, Devin JD (1991) The 1783 Lakagigar eruption in Iceland: geochemistry, CO2 and Sulfur degassing. Contrib Miner Petrol 107:435–447

    Article  Google Scholar 

  43. Métrich N, Zanon V, Creon L, Hildebrand A, Moreira M, Ornelas Marquez F (2014) Is the ‘Azores Hotspot’ a Wetspot? Insights from the Geochemistry of Fluid and Melt Inclusions in Olivine of Pico Basalts. J Petrol 55/2:377–393

    Article  Google Scholar 

  44. Meyer PS, Sigurdsson H, Schilling J-G (1985) Petrological and geochemical variations along Iceland’s neovolcanic zones. J Geophys Res 90:10,043–10,072

    Google Scholar 

  45. Michael P (1995) Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131(3–4):301–320

    Article  Google Scholar 

  46. Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103:18325–18356

    Article  Google Scholar 

  47. Michael PJ, Graham DW (2015) The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts. Lithos 236–237:338–351

    Article  Google Scholar 

  48. Mysen BO (2012) Silicate-COH melt and fluid structure, their physicochemical properties, and partitioning of nominally refractory oxides between melts and fluids. Lithos 148:228–246

    Article  Google Scholar 

  49. Neave DA, Putirka KD (2017) A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am Miner 102:777–794

    Article  Google Scholar 

  50. Neave DA, Maclennan J, Thordarson TH, Hartley ME (2015) The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash). Contrib Miner Petrol 170:1–23

    Article  Google Scholar 

  51. Neave DA, Hartley ME, Maclennan J, Edmonds M, Thordarson T (2017) Volatiles in high anorthite plagioclase-hosted melt inclusions: the 10 ka Grímsvötn tephra series, Iceland. Geochim Cosmochim Acta 205:100–118

    Article  Google Scholar 

  52. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for Excel. Comput Geosci28(5):597–604

    Article  Google Scholar 

  53. O’Neill HSC, Jenner FE (2012) The global pattern of trace-element distributions in ocean floor basalts. Nature 491:698–704

    Article  Google Scholar 

  54. Oppenheimer C (2004) Volcanic degassing. in Holland HD, Turekian KK (eds): Treatise on geochemistry, vol 3, Elsevier, Amsterdam, pp 123–166

    Google Scholar 

  55. Pedersen G, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Oskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB. (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geoth Res 340:155–169

    Article  Google Scholar 

  56. Pichavant M, Di Carlo I, Rotolo SG, Scalliet B, Burgisser A, La Galle N, Martel C (2013) Generation of CO2-rich melts during basalt magma ascent and degassing. Contrib Miner Petrol 166:545–561

    Article  Google Scholar 

  57. Portnyagin M, Almeev R, Mateev S, Holtz F (2008) Experimental evidence for rapid water exchange between olivine and host magma. Earth Planet Sci Lett 272:541–552

    Article  Google Scholar 

  58. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  59. Risku-Norja H (1985) Gabbro nodules from a picritic pillow basalt, Midfell, SW Iceland. Nord Volcanol Inst Prof Pap 8501

  60. Roedder E (1984) Fluid inclusions. Rev Mineral 12:646

    Google Scholar 

  61. Rosenthal A, Hauri EH, Hirschmann MM (2015) Experimental determination of C, F and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting and CO2 contents of basaltic source regions. Earth Planet Sci Lett 412:77–87

    Article  Google Scholar 

  62. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-oceanic ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455

    Article  Google Scholar 

  63. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst. https://doi.org/10.1029/2003GC000597

    Google Scholar 

  64. Schiellerup H (1995) Generation and equilibration of olivine tholeiites in the northern rift zone of Iceland. A petrogenetic study of the Bláfjall table mountain. J Volcanol Geotherm Res 65:161–179

    Article  Google Scholar 

  65. Schipper CI, Le Voyer M, Moussallam Y, White JDL, Thordarson T, Kimura J-I, Chang Q (2016) Degassing and magma mixing during the eruption of Surtsey Volcano (Iceland, 1963–1967): the signatures of a dynamic and discrete rift propagation event. Bull Volcanol 78:33

    Article  Google Scholar 

  66. Schmidt A, Carslaw KS, Mann GW, Wilson M, Breider TJ, Pickering SJ, Thordarson T (2010) The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei. Atmos Chem Phys 10:6025–6041

    Article  Google Scholar 

  67. Shimizu K, Saal AE, Myers CE, Nagel AN, Hauri EH, Forsyth DW, Kamenetsky VS, Niu Y (2016) Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: implications for the volatile content of the Pacific upper mantle. Geochim Cosmochim Acta 176:44–80

    Article  Google Scholar 

  68. Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Portnyagin MV (2010) Solubility of H2O and CO2-bearing fluids in tholeiitic basalts pressures up to 500 MPa. Chem Geol 277:115–125

    Article  Google Scholar 

  69. Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Jazwa AM, Jakubiak AA (2014) Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts. Chem Geol 388:112–129

    Article  Google Scholar 

  70. Shorttle O, Maclennan J (2011) Compositional trends of Icelandic basalts: Implications for short-length scale lithological heterogeneity in mantle plumes. Geochem Geophys Geosyst. https://doi.org/10.1029/2011GC003748

    Google Scholar 

  71. Sigmarsson O, Haddadi B, Carn S, Moune S, Gudnason J, Yang K, Clarisse L (2013) The sulfur budget of the 2011 Grímsvötn eruption, Iceland. Geophys Res Lett 40/23:6095–6100

    Article  Google Scholar 

  72. Sigmundsson F, Hooper A, Hreinsdóttir S, Vogfjörd KS, Ófeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB, Drouin V, Árnadóttir Th, Jónsdóttir K, Gudmundsson MT, Högnadóttir Th, Fridriksdóttir HM, Hensch M, Einarsson P, Magnússon E, Samsonov S, Brandsdóttir B, White RS, Ágústsdóttir Th, Greenfield T, Green RG, Hjartardóttir AR, Pedersen R, Bennett RA, Geirsson H, La Femina PC, Björnsson H, Pálsson F, Sturkell E, Bean CJ, Möllhoff M, Braiden AK, Eibl EPS (2014) Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517:191–195

    Article  Google Scholar 

  73. Sigurdsson H (1990) Evidence of volcanic loading of the atmosphere and climate response. Palaeogeogr Palaeoclimatol Palaeoecol 89(3):277–289

    Article  Google Scholar 

  74. Sigurdsson H, Sparks RSJ (1981) Petrology of rhyolitic and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J Petrol 22:41–84

    Article  Google Scholar 

  75. Sigurdsson IA, Steinthórsson S, Grönvold K (2000) Calcium-rich inclusions in Cr-spinels from Borgarhraun, northern Iceland. Earth Planet Sci Lett 183:15–26

    Article  Google Scholar 

  76. Steele-MacInnis MJ, Esposito R, Bodnar RJ (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O-CO2 systematics of volatile saturated silicate melt inclusions. J Petrol 52:2461–2482

    Article  Google Scholar 

  77. Steinthórsson S, Hardarson BS, Ellam RM, Larsen G (2000) Petrochemistry of the Gjálp-1996 subglacial eruption, Vatnajökull, SE Iceland. J Volcanol Geotherm Res 98:79–90

    Article  Google Scholar 

  78. Sterner SM, Pitzer KS (1994) An equation of state for carbon dioxide valid from zero to extreme pressures. Contrib Miner Petrol 117:362–374

    Article  Google Scholar 

  79. Thordarson T, Self S (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J Geophys Res Atmos 108:1–29

    Article  Google Scholar 

  80. Thordarson T, Miller DJ, Larsen G, Self S, Sigurdsson H (2001) New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland. J Volcanol Geoth Res 108:33–54

    Article  Google Scholar 

  81. Thordarson T, Self S, Miller DJ, Larsen G, Vilmundardóttir EG (2003) Sulphur release from flood lava eruptions in the Veiðivötn, Grímsvötn and Katla volcanic systems, Iceland. Geol Soc Lond Spec Publ 213:103–121

    Article  Google Scholar 

  82. Tollari N, Baker DR, Barnes S-J (2008) Experimental effects of pressure and fluorine on apatite saturation in mafic magmas, with reference to layered intrusions and massif anorthosites. Contrib Miner Petrol 156:161–175

    Article  Google Scholar 

  83. Trønnes RG (1990) Basaltic melt evolution of the Hengill volcanic system, SW Iceland, and evidence for clinopyroxene assimilation in primitive tholeiitic magmas. J Geophys Res 95:15893–15910

    Article  Google Scholar 

  84. Urann BM, Le Roux V, Hammond K, Marschall HR, Lee C-TA, Monteleone BD (2017) Fluorine and chlorine in mantle minerals and the halogen budget of the Earth’s mantle. Contrib Miner Petrol 172:51

    Article  Google Scholar 

  85. Viti C, Frezzotti ML (2001) Transmission electron microscopy applied to fluid inclusion investigations. Lithos 55:125–138

    Article  Google Scholar 

  86. Vogfjörð KS, Hensch M, Hjörleifsdóttir V, Jónsdóttir K (2015) High-precision mapping of seismicity in the last decades at Bárðarbunga volcano. EGU Conf Abstr 17:13430V

    Google Scholar 

  87. Webster JD, Kinzler RJ, Mathez EA (1999) Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochim Cosmochim Acta 63/5:729–738

    Article  Google Scholar 

  88. Werner R (1994) Struktur und Entstehung subglazialer/subakustrischer Vulkane am Beispiel des Vulkankomplexes Herdubreid/Herdubreidartögl in Island. PhD thesis, Christian-Albrechts-Universität zu Kiel, p 153

  89. White WM (2013) Geochemistry. Wiley-Blackwell, Hoboken, p 659

    Google Scholar 

  90. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  91. Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J (2006) Volatile and trace elements in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth Planet Sci Lett 241:932–951

    Article  Google Scholar 

  92. Yang H-J, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol 124:1–18

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the sampling work carried out by the 2014–2015 Holuhraun eruption team (University of Iceland) led by Morten S. Riishuus, Ármann Höskuldsson and Thorvaldur Thordarson, and by a team of researchers from the UK led by Evgenia Ilyinskaya. We are also grateful to the Civil Protection Department of the National Commissioner of the Icelandic Police for making the work in the field possible. This work was financially supported by Natural Environment Research Council Grants [NE/M021130/1] and [IMF548/1114] and by the DFG core facility for high pressure research programme at the Bayerisches Geoinstitut, University of Bayreuth. We thank Richard Hinton and Cees-Jan de Hoog for their assistance with the SIMS analyses and Tamás Váczi (Eötvös University, Budapest) for his assistance during the Raman analyses. We thank Nicole Métrich and Maxim Portnyagin for their detailed and helpful reviews.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Bali.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 498 KB)

Supplementary material 2 (XLSX 104 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bali, E., Hartley, M.E., Halldórsson, S.A. et al. Melt inclusion constraints on volatile systematics and degassing history of the 2014–2015 Holuhraun eruption, Iceland. Contrib Mineral Petrol 173, 9 (2018). https://doi.org/10.1007/s00410-017-1434-1

Download citation

Keywords

  • Degassing
  • Iceland
  • Holuhraun 2014–2015
  • Melt inclusion
  • Mantle volatiles